

The Study of Gamma Emission in the Fission Process

<u>Liqiang QI</u>, Matthieu LEBOIS, Jonathan WILSON Group NESTER, Institut de Physique Nucléaire Orsay

Fundamental Physics

NSTITUT DE PHYSIQUE NUCLÉAIRE

ORSAY

Fundamental Physics

- 1. Energy partition in fission
- 2. Angular momentum generation
- 3. Competition between neutron and gamma ray emission
- 4. Nuclear structure information

Fundamental Physics

- 1. Energy partition in fission
- 2. Angular momentum generation
- 3. Competition between neutron and gamma ray emission
- 4. Nuclear structure information

Reactor Physics

- Prompt Fission Gamma Spectrum (PFGS):
 - \rightarrow total energy, mean energy, multiplicity
- Gamma heating is underestimated up to 28%

Reactor Physics

Very-high-temperature reactor (VHTR)

Molten-salt reactor (MSR)

Supercritical-water-cooled reactor (SCWR)

Gas-cooled faster reactor (GFR)

Lead-cooled faster reactor (LFR)

Sodium-cooled faster reactor (SFR)

Reactor Physics

Very-high-temperature reactor (VHTR)

Gas-cooled faster reactor

(GFR)

Molten-salt reactor (MSR)

Lead-cooled faster reactor (LFR)

Sodium-cooled faster reactor (SFR)

 $^{\rm 238}U(n,\,f)$ in fast neutron energy of 2.0 MeV and 4.6 MeV

LICORNE Project

Quais Mono-Energetic Neutron Source

Quais Mono-Energetic Neutron Source

Quais Mono-Energetic Neutron Source

10

10

10⁶

10⁵

10⁴

10³

10²

10

L. QI IPNO

x (mm)

May 29, 2017

Fission- alpha discrimination

Measured Spectrum: g(x)

Measured Spectrum: g(x)

Measured Spectrum: g(x)

Inverse problem:

$$g(x) = \int_0^\infty R(x, y) f(y)$$

- g(x): measured spectrum (observation) R(x,y): response matrix (simulated) f(y): emission spectrum
 - emission spectrum (unknown)

Methods	Test1 - discrete distribution			Test2 - continuum distribution		
	Multiplicity	Total Energy	Average Energy	Multiplicity	Total Energy	Average Energy
	M_{γ}	$E_{\gamma,tot}(MeV)$	$\epsilon_{\gamma}({ m MeV})$	M_{γ}	$E_{\gamma,tot}(MeV)$	$\epsilon_{\gamma}(\text{MeV})$
Bin-by-bin	1.54 ± 0.057	1.09 ± 0.049	0.71 ± 0.041	7.37 ± 0.12	13.09 ± 0.34	1.77 ± 0.054
Matrix Inversion	1.68 ± 0.027	1.19 ± 0.027	0.71 ± 0.020	7.25 ± 0.10	12.89 ± 0.35	1.78 ± 0.055
Linear Iteration	1.65 ± 0.058	1.16 ± 0.024	0.70 ± 0.029	7.28 ± 0.079	12.93 ± 0.073	1.77 ± 0.022
Non-linear Iteration	1.57 ± 0.013	1.11 ± 0.016	0.71 ± 0.012	7.24 ± 0.025	12.83 ± 0.061	1.77 ± 0.010
Regularization	1.59 ± 0.01	1.07 ± 0.015	0.67 ± 0.010	7.27 ± 0.014	13.27 ± 0.040	1.82 ± 0.006
Reference	1.58 ± 0.012	1.11 ± 0.001	0.71 ± 0.008	7.25 ± 0.015	12.86 ± 0.004	1.77 ± 0.001

Deconvolution algorithms

Results	M_{γ}	$E_{\gamma,tot}$ (MeV)	ϵ_{γ}
This work	$8.35 {\pm} 0.17$	$6.65 {\pm} 0.07$	$0.80 {\pm} 0.02$
R. Billnert et al. [1]	$8.30{\pm}0.09$	$6.64 {\pm} 0.10$	$0.80 {\pm} 0.01$
Chyzh et al. [2]	$8.14{\pm}0.40$	$7.65 {\pm} 0.55$	$0.94{\pm}0.05$
ENDF/B-VII.1	7.85	6.13	0.78

May 29, 2017

Results and Discussions

Figure: Comparison between experiments and theoretic calculation.

→ Neither the position of peaks in low energy region nor the slope of the high energy tail agrees with the experimental data. It suggests that the model requires better <u>level density function</u> and <u>gamma strength function</u>.

Results and Discussions

Figure: Internal comparison at different excitation energy.

 \rightarrow The slope change indicated the excitation energy partition, while not obvious in the GEF code calculation

 \rightarrow Also confirms the idea that excess excitation energy is evacuated mainly by neutron evaporation instead of gamma emission.

Results and Discussions

13 Theory: FREYA (b) Theory: CGMF Theory: GEF Theory: FIFRELIN Exp: CEA DAM/DIF Exp: M. Lebois et al. 10 Systematics: A. Oberstedt et al. This work 9 8 5 5 10 'n 15 20 Neutron Energy (MeV)

→ Large discrepancy is observed, especially
 In terms of the gamma multiplicity;

1. ²³⁸U(n, f) is not the origin of the underestimation of gamma heating in reactors;

2. Theory models need to be refined according to the discrepancy appearing in the ²³⁹U* fissioning system;

3. Further physical interpretation is still undergoing.

Thank you for your attention