Recent developments in Bogoliubov Many-Body Perturbation Theory

Pierre Arthuis

PHENIICS Fest Université Paris-Saclay - May 30th 2017

Motivation

2 On Bogoliubov Many-Body Perturbation Theory

3 Recent progress

Motivation

On Bogoliubov Many-Body Perturbation Theory

3 Recent progress

Quantum many-body methods

Expansion methods around unperturbed product state

Symmetry breaking helps incorporating non-dynamical correlations:

- Superfluid character: U(1) (particle number)
- Deformations: *SU*(2) (angular momentum)

But nuclei carry good quantum numbers (e.g. number of particles)

 \Rightarrow Symmetries must eventually be restored

Quantum many-body methods

MBPT: Recently (re)implemented with SRG-evolved H [Tichai et al. 2016] GSCGF, BCC: Recently proposed and implemented [Somà et al. 2011, Signoracci et al. 2014] Sym.-res. BCC & sym.-res. BMBPT: Recently proposed [Duguet 2015, Duguet & Signoracci 2016]

Quantum many-body methods

MBPT: Recently (re)implemented with SRG-evolved H [Tichai et al. 2016] GSCGF, BCC: Recently proposed and implemented [Somà et al. 2011, Signoracci et al. 2014] Sym.-res. BCC & sym.-res. BMBPT: Recently proposed [Duguet 2015, Duguet & Signoracci 2016]

Motivation

2 On Bogoliubov Many-Body Perturbation Theory

3 Recent progress

- $\textbf{0} \ \ \text{Use a Bogoliubov vacuum } |\Phi\rangle \ \text{with } \beta_k |\Phi\rangle = 0 \ \text{for all } k$
- 2 Define grand potential operator Ω from chiral interaction

$$\Omega \equiv H - \lambda A$$

then normal-order and split: $\Omega=\Omega_0+\Omega_1$

3 Define evolved state in imaginary time

$$|\Psi(au)
angle\equiv \mathcal{U}(au)|\Phi
angle=e^{- au\Omega_0}\mathsf{T}e^{-\int_0^ au d au\Omega_1(au)}|\Phi
angle$$

- **@** Expand and truncate the grand potential kernel $\Omega(\tau) \equiv \langle \Psi(\tau) | \Omega | \Phi \rangle$and the norm kernel $N(\tau) \equiv \langle \Psi(\tau) | \Phi \rangle$
- **5** Extract ground state energy via

$$\mathrm{E}_{\mathsf{0}} = \lim_{ au o \infty} rac{\Omega(au)}{N(au)} = \lim_{ au o \infty} \omega(au)$$

Inserting the operator $\boldsymbol{\Omega}$ at time 0 and expanding

$$\begin{split} \mathbf{E}_{0} &= \lim_{\tau \to \infty} \frac{\langle \Psi(\tau) | \Omega | \Phi \rangle}{\langle \Psi(\tau) | \Phi \rangle} \\ &= \langle \Phi | \Big\{ \Omega(\mathbf{0}) - \int_{0}^{\infty} d\tau_{1} \mathsf{T} \left[\Omega_{1} \left(\tau_{1} \right) \Omega(\mathbf{0}) \right] \\ &+ \frac{1}{2!} \int_{0}^{\infty} d\tau_{1} d\tau_{2} \mathsf{T} \left[\Omega_{1} \left(\tau_{1} \right) \Omega_{1} \left(\tau_{2} \right) \Omega(\mathbf{0}) \right] + ... \Big\} | \Phi \rangle_{c} \end{split}$$

Then expressing the grand potential in the qp basis

$$\Omega = \Omega^{00} + \frac{1}{1!} \sum_{k_1 k_2} \Omega^{11}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta_{k_2} + \frac{1}{2!} \sum_{k_1 k_2} \left\{ \Omega^{20}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} + \Omega^{02}_{k_1 k_2} \beta_{k_2} \beta_{k_1} \right\} + \dots$$

Expansion of the grand potential kernel

$$\begin{split} \mathbf{E}_{0} &= \sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!} \sum_{i_{0}+j_{0}=2,4} \int_{0}^{\infty} d\tau_{1} \dots d\tau_{p} \\ &\vdots \\ i_{p}+j_{p}=2,4 \\ &\times \sum_{\substack{k_{1}\dots k_{i_{1}} \\ k_{i_{1}}\dots k_{i_{1}} \\ k_{i_{1}}\dots k_{i_{1}} \\ k_{i_{1}+1}\dots k_{i_{1}+j_{1}}}} \frac{\Omega_{k_{1}\dots k_{i_{1}}k_{i_{1}+1}\dots k_{i_{1}+j_{1}}}^{i_{j}j_{p}}}{(i_{1})!(j_{1})!} \dots \frac{\Omega_{l_{1}\dots l_{p}}^{i_{p}j_{p}}}{(i_{p})!(j_{p})!} \frac{\Omega_{m_{1}\dots m_{0}}^{i_{0}j_{0}} \\ \Omega_{m_{1}\dots m_{0}}^{i_{0}j_{0}+1\dots m_{i_{0}+j_{0}}}}{(i_{0})!(j_{0})!} \\ &\times \langle \Phi | \mathsf{T} \left[\beta_{k_{1}}^{\dagger}(\tau_{1})\dots \beta_{k_{i_{1}}}^{\dagger}(\tau_{1}) \beta_{k_{i_{1}+j_{1}}}(\tau_{1})\dots \beta_{k_{i_{1}+j_{1}}}(\tau_{1})\dots \beta_{k_{i_{1}+j_{1}}}(\tau_{1})\dots \\ &\dots \beta_{l_{1}}^{\dagger}(\tau_{p})\dots \beta_{l_{i_{p}}}^{\dagger}(\tau_{p}) \beta_{l_{i_{p}+j_{p}}}(\tau_{p})\dots \beta_{l_{i_{p+1}}}(\tau_{p}) \\ &\times \beta_{m_{1}}^{\dagger}(0)\dots \beta_{m_{i_{0}}}^{\dagger}(0)\beta_{m_{i_{0}+j_{0}}}(0)\dots \beta_{m_{i_{0}+1}}(0) \right] | \Phi \rangle_{c} \end{split}$$

All contributions computable algebraically and diagramatically

First- and second-order diagrams

Diagrammatic representation of the grand potential Ω $\Omega = \begin{array}{c} \bullet \\ \Omega^{00} \end{array} + \begin{array}{c} \bullet \\ \Omega^{11} \end{array} + \begin{array}{c} \bullet \\ \Omega^{20} \end{array} + \begin{array}{c} \bullet \\ \Omega^{02} \end{array} + \dots$

Extracting and applying diagrammatic rules

Motivation

On Bogoliubov Many-Body Perturbation Theory

3 Recent progress

Third-order diagrams

Derivation of all diagrams up to third order

BMBPT must match standard MBPT in Slater determinant limit

- \rightarrow Matching must be true at each order
- \rightarrow Proof of consistent formalism for BMBPT

BMBPT must match standard MBPT in Slater determinant limit

- \rightarrow Matching must be true at each order
- \rightarrow Proof of consistent formalism for BMBPT

BMBPT(3) diagrams match MBPT(3) ones exactly

Canonical HF-MBPT diagrams were recovered from only one BMBPT

First BMBPT(2) proof of principle calculation of ^{20}O :

using NN SRG-evolved chiral interaction

On MCPT:

- Multi-configurational MBPT
- Alternative method for open-shell nuclei

First BMBPT(2) calculations on O, Ca and Sn isotopic chains

using NN and 3N SRG-evolved chiral interaction

Same chains under investigation at third order at the moment

cea

Use of diagrammatic rules and graph theory

 \Rightarrow Produce graphs and their expressions numerically:

- Produce higher orders diagrams
 - 59 diagrams at order 4
 - 568 diagrams at order 5
- Extend to three-body diagrams
 - 15 diagrams at order 3
 - 337 diagrams at order 4
 - 10 148 diagrams at order 5

- Go up to fourth order
 - \rightarrow Even better than other *ab initio* methods?
 - \rightarrow Test for computational cost
- Push BMBPT to heavier nuclei
 - ightarrow Can go further than other *ab initio* methods
 - $\rightarrow~$ Good test for the computational cost
- Implement particle-number restored BMBPT for the first time
 - $\rightarrow\,$ Required for precise study of open-shell nuclei
 - $\rightarrow\,$ Proof of concept of symmetry-restored BMBPT / BCC
- Ab initio driven EDF method [T. Duguet et al. (2015)]
 - $\rightarrow~\mathsf{Safe}/\mathsf{correlated}/\mathsf{improvable}$ off-diagonal EDF kernels
 - \rightarrow Based on PNR-BMBPT

Conclusion

- Ab initio expansion methods are a powerful framework
 - Rigorous approach to the many-body problem
 - X Computationally intensive (polynomial scaling)
 - $\pmb{\mathsf{X}}$ Cannot describe the whole nuclear chart
- Many-Body Perturbation Theory and its daughters are one of them
 - Computationally friendly
 - \checkmark Potentially as precise as others when using SRG-evolved H
- BMBPT has been formulated and is being implemented
 - ✓ First derivation and calculations up to third order
 - Appropriate framework to tackle open-shell nuclei
 - Systematic studies at third and fourth order to come
- Symmetry-restored BMBPT is the next step

BMBPT Project

P. Arthuis T. Duguet J.-P. Ebran

On broader aspects

M. Drissi J. Ripoche

technische A. Tichai universität darmstadt R. Roth

Backup slides!

On Nuclear Structure Theory

Different methods to treat the whole nuclear chart:

"Exact" ab initio methods

- Since the 80's
- GFMC, NCSM, FY

Courtesy of V. Soma, T. Duguet

Ab initio approaches for closed-shell nuclei

- Since the 2000's
- DSCGF, CC, IMSRG

Non-perturbative ab initio approaches for open-shell nuclei

- Since the 2010's
- GSCGF, BCC, MR-IMSRG

Ab initio shell model

- Since 2014
- Effective interaction via CC/IMSRG

- 1 Consider point-like nucleons as appropriate degrees of freedom
- **2** Use interactions rooted in underlying theory (i.e. QCD)
- **③** Expand the many-body Schrödinger equation systematically
- Truncate at a given order and solve using computational methods
- **5** Estimate systematic error

Nuclear many-body methods

Status and perspectives of *ab initio* methods

Recent developments: symmetry breaking and restoration \rightarrow Access to open-shell nuclei

Reach some isotopic chains for medium-mass nuclei

Systematic and predictive methods: estimates of theoretical error

Reminder on second quantization

Introduce creation a^+_μ and annihilation a_μ operators acting on ${\cal F}$ such that

- a_μ and a^+_μ are hermitian conjugate: $a^+_\mu = (a_\mu)^\dagger$
- a_{μ} annihilates a particle in state $|\mu\rangle$:

$$\begin{array}{l} \mathbf{a}_{\mu} : \mathcal{H}_{N} \to \mathcal{H}_{N-1} \\ |\alpha\beta\ldots\rangle \to \mathbf{a}_{\mu} |\alpha\beta\ldots\rangle \equiv \mathbf{0} \qquad \text{if } \mu \text{ is not initially occupied} \\ |\mu\beta\ldots\rangle \to \mathbf{a}_{\mu} |\mu\beta\ldots\rangle \equiv |\beta\ldots\rangle \text{ if } \mu \text{ is initially occupied} \end{array}$$

•
$$a^+_\mu$$
 creates a particle in the state $|\mu\rangle$:

$$\begin{array}{l} \mathbf{a}_{\mu}^{+} : \ \mathcal{H}_{N} \rightarrow \ \mathcal{H}_{N+1} \\ |\alpha \beta \ldots \rangle \rightarrow \ \mathbf{a}_{\mu}^{+} |\alpha \beta \ldots \rangle \equiv |\mu \alpha \beta \ldots \rangle \text{ if } \mu \text{ is not initially occupied} \\ |\alpha \ldots \mu \ldots \rangle \rightarrow \ \mathbf{a}_{\mu}^{+} |\alpha \ldots \mu \ldots \rangle \equiv \mathbf{0} \qquad \text{ if } \mu \text{ is initially occupied} \end{array}$$

•
$$a_{\mu}$$
 and a_{μ}^{+} obey anticommutation relationships

$$\{a^+_\mu, a^+_\nu\} = 0$$
 , $\{a_\mu, a_\nu\} = 0$, $\{a_\mu, a^+_\nu\} = \delta_{\mu\nu}$.

Use of the creation and annihilation operators

• Create Slater determinants:

$$|\alpha \beta \ldots \rangle = a_{\alpha}^{+} a_{\beta}^{+} \ldots |0\rangle$$

• Write operators: One-body:

$${\sf F} = \sum_{lphaeta} {\sf f}_{lphaeta} \, {\sf a}_{lpha}^+ \, {\sf a}_{eta}$$

using matrix elements of the operator:

$$f_{\alpha\beta} \equiv \langle i : \alpha | f(i) | i : \beta \rangle$$

And two-body:

$${\cal G}=rac{1}{2}\sum_{lphaeta\gamma\delta}g_{lphaeta\gamma\delta}\,\,a^+_lpha\,a^+_eta\,a_\delta\,a_\gamma\,\,.$$

with matrix elements

$$g_{\alpha\beta\gamma\delta} \equiv \langle i:\alpha; j:\beta|g(i,j)|i:\gamma; j:\delta \rangle$$

Bogoliubov transformation

Bogoliubov transformation connects qp operators $\{\beta_k; \beta_k^{\dagger}\}$ to particle ones:

$$\beta_k = \sum_p U_{pk}^* a_p + V_{pk}^* a_p^{\dagger}$$
$$\beta_k^{\dagger} = \sum_p U_{pk} a_p^{\dagger} + V_{pk} a_p$$

They obey anticommutation rules

$$\{\beta_{k_1}, \beta_{k_2}\} = 0 \quad , \quad \{\beta_{k_1}^{\dagger}, \beta_{k_2}^{\dagger}\} = 0 \quad , \quad \{\beta_{k_1}, \beta_{k_2}^{\dagger}\} = \delta_{k_1 k_2}$$

Bogoliubov transformation can be written in matrix form

$$\begin{pmatrix} \beta \\ \beta^{\dagger} \end{pmatrix} = W^{\dagger} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}$$

where

$$W \equiv \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix}$$

Contractions and normal product:

$$\overrightarrow{AB} \equiv AB - :AB:$$
 with $\overrightarrow{AB} = \frac{\langle \Phi | AB | \Phi \rangle}{\langle \Phi | \Phi \rangle}$

Elementary contractions:

$$\beta_{\alpha}^{+}\beta_{\beta}^{+} = \frac{\langle \Phi | \beta_{\alpha}^{+}\beta_{\beta}^{+} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \qquad \qquad \beta_{\alpha}^{+}\beta_{\beta} = \frac{\langle \Phi | \beta_{\alpha}^{+}\beta_{\beta} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0$$
$$\beta_{\alpha}^{-}\beta_{\beta}^{+} = \frac{\langle \Phi | \beta_{\alpha}\beta_{\beta}^{+} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \delta_{\alpha\beta} \qquad \qquad \beta_{\alpha}^{-}\beta_{\beta} = \frac{\langle \Phi | \beta_{\alpha}\beta_{\beta} | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0$$

$$ABCD \dots YZ = \overrightarrow{ABCD} \dots \overrightarrow{YZ} - \overrightarrow{ACBD} \dots \overrightarrow{YZ} + \overrightarrow{ADBC} \dots \overrightarrow{YZ} + \dots$$
$$+ \overrightarrow{ABCD} \dots \overrightarrow{YZ} = \overrightarrow{ACBD} \dots \overrightarrow{YZ} + \overrightarrow{ADBC} \dots \overrightarrow{YZ} + \dots$$
$$\vdots$$
$$+ \overrightarrow{AB} : CD \dots YZ : - \overrightarrow{AC} : BD \dots YZ : + \overrightarrow{AD} : BC \dots YZ : + \dots$$
$$+ : ABCD \dots YZ :$$

$$\begin{split} \beta^{+}_{\alpha}\beta^{+}_{\beta}\beta_{\delta}\beta_{\gamma} &= \beta^{+}_{\alpha}\beta^{+}_{\beta}\beta_{\delta}\beta_{\gamma} - \beta^{+}_{\alpha}\beta_{\delta}\beta^{+}_{\beta}\beta_{\gamma} + \beta^{+}_{\alpha}\beta_{\gamma}\beta^{+}_{\beta}\beta_{\delta} \\ &+ \beta^{+}_{\alpha}\beta^{+}_{\beta}:\beta_{\delta}\beta_{\gamma}: - \beta^{+}_{\alpha}\beta_{\delta}:\beta^{+}_{\beta}\beta_{\gamma}: + \beta^{+}_{\alpha}\beta_{\gamma}:\beta^{+}_{\beta}\beta_{\delta}: \\ &+ \beta^{+}_{\beta}\beta_{\delta}:\beta^{+}_{\alpha}\beta_{\gamma}: - \beta^{+}_{\beta}\beta_{\gamma}:\beta^{+}_{\alpha}\beta_{\delta}: + \beta^{+}_{\delta}\beta_{\gamma}:\beta^{+}_{\alpha}\beta^{+}_{\beta}: \\ &+ :\beta^{+}_{\alpha}\beta^{+}_{\beta}\beta_{\delta}\beta_{\gamma}: \end{split}$$

Introduce time-dependent kernel for generic operator O

 $O(\tau) \equiv \langle \Psi(\tau) | O | \Phi \rangle$

or other operator of interest

$$\begin{split} \mathcal{N}(\tau) &\equiv \langle \Psi(\tau) | \, \mathbb{1} | \Phi \rangle \\ \mathcal{H}(\tau) &\equiv \langle \Psi(\tau) | \mathcal{H} | \Phi \rangle \\ \mathcal{A}(\tau) &\equiv \langle \Psi(\tau) | \mathcal{A} | \Phi \rangle \\ \Omega(\tau) &\equiv \langle \Psi(\tau) | \Omega | \Phi \rangle \end{split}$$

and reduced kernel

$$\mathcal{O}(au) \equiv rac{O(au)}{N(au)}$$

Kernels can be decomposed as

$$\begin{split} \mathcal{N}(\tau) &= \sum_{\mathsf{A} \in \mathbb{N}} \sum_{\mu} e^{-\tau \Omega^{\mathsf{A}}_{\mu}} |\langle \Phi | \Psi^{\mathsf{A}}_{\mu} \rangle|^{2} \\ \mathcal{H}(\tau) &= \sum_{\mathsf{A} \in \mathbb{N}} \sum_{\mu} \mathsf{E}^{\mathsf{A}}_{\mu} e^{-\tau \Omega^{\mathsf{A}}_{\mu}} |\langle \Phi | \Psi^{\mathsf{A}}_{\mu} \rangle|^{2} \\ \mathcal{A}(\tau) &= \sum_{\mathsf{A} \in \mathbb{N}} \sum_{\mu} A e^{-\tau \Omega^{\mathsf{A}}_{\mu}} |\langle \Phi | \Psi^{\mathsf{A}}_{\mu} \rangle|^{2} \\ \Omega(\tau) &= \sum_{\mathsf{A} \in \mathbb{N}} \sum_{\mu} \Omega^{\mathsf{A}}_{\mu} e^{-\tau \Omega^{\mathsf{A}}_{\mu}} |\langle \Phi | \Psi^{\mathsf{A}}_{\mu} \rangle|^{2} \end{split}$$

Defining the large τ limit of a kernel via

$$O(\infty) \equiv \lim_{\tau \to \infty} O(\tau)$$

gives

$$\begin{split} N(\infty) &= e^{-\tau\Omega_0^{A_0}} |\langle \Phi | \Psi_0^{A_0} \rangle|^2 \\ H(\infty) &= \mathsf{E}_0^{A_0} \; e^{-\tau\Omega_0^{A_0}} |\langle \Phi | \Psi_0^{A_0} \rangle|^2 \\ A(\infty) &= \mathsf{A}_0 \; e^{-\tau\Omega_0^{A_0}} |\langle \Phi | \Psi_0^{A_0} \rangle|^2 \\ \Omega(\infty) &= \Omega_0^{A_0} \; e^{-\tau\Omega_0^{A_0}} |\langle \Phi | \Psi_0^{A_0} \rangle|^2 \end{split}$$

From the previous relations,

$$\begin{split} H(\infty) &= \mathsf{E}_0^{\mathsf{A}_0} \, \mathsf{N}(\infty) \\ A(\infty) &= \mathsf{A}_0 \, \mathsf{N}(\infty) \\ \Omega(\infty) &= \Omega_0^{\mathsf{A}_0} \, \mathsf{N}(\infty) \end{split}$$

Or directly from the reduced kernels

$$\begin{aligned} \mathcal{H}(\infty) &= \mathsf{E}_0^{\mathsf{A}_0} \\ \mathcal{A}(\infty) &= \mathsf{A}_0 \\ \Omega_r(\infty) &= \Omega_0^{\mathsf{A}_0} \end{aligned}$$

$$\begin{split} \mathcal{N}(\tau) &= \langle \Phi | \mathcal{U}(\tau) | \Phi \rangle \\ &= \langle \Phi | e^{-\tau \Omega_0} \mathcal{U}_1(t) | \Phi \rangle \\ &= e^{-\tau \Omega_{00}} \langle \Phi | \mathsf{T} e^{-\int_0^\tau dt \Omega_1(t)} | \Phi \rangle \\ &= e^{-\tau \Omega^{00}} \langle \Phi | \Big\{ 1 - \int_0^\tau d\tau_1 \Omega_1(\tau_1) \\ &+ \frac{1}{2!} \int_0^\tau d\tau_1 d\tau_2 \mathsf{T} \left[\Omega_1(\tau_1) \Omega_1(\tau_2) \right] + ... \Big\} | \Phi \rangle \end{split}$$

Eventually, one gets

BMBPT propagators

And grand potential vertices:

Then there are some rules to follow:

- Order p
 ightarrow p vertices $\Omega^{ij}(au_k)$, 1 $O^{ij}(0)$ connected via propagators
- A good labelling convention
- Make all possible contractions
- Keep only topologically distinct diagrams
- Sum all time labels from 0 to τ
- Sign factor $(-1)^{p+n_c}$
- Symmetry factors: equivalent lines and exchangeable vertices
- Sign factor linked to reading direction

Plus some selection rules:

- No anomalous propagators
 - \rightarrow Same number of creators and operators
- Propagators linking two same vertices \rightarrow Same direction
- No contraction of a vertex on itself
- Propagators starting from vertex at time 0
 → Moving upward

Let us draw some operator vertices:

Applying all the previous rules:

Second-order diagrams

cea

Bogoliubov transformation simplifies to

$$\begin{split} \mathbf{a} > \mathbf{A}_{\mathbf{0}} : & \mathbf{c}_{\mathbf{a}} = \beta_{\mathbf{a}}, \quad \mathbf{c}_{\mathbf{a}}^{\dagger} = \beta_{\mathbf{a}}^{\dagger}, \\ i \leq \mathbf{A}_{\mathbf{0}} : & \mathbf{c}_{i} = \beta_{i}^{\dagger}, \quad \mathbf{c}_{i}^{\dagger} = \beta_{i}. \end{split}$$

U and V matrix elements are

$$\begin{aligned} \mathbf{a} > \mathbf{A}_0 : & V_{ak} = \mathbf{0}, \quad U_{ak} = \delta_{ak}, \\ i \le \mathbf{A}_0 : & V_{ik} = \delta_{ik}, \quad U_{ik} = \mathbf{0}. \end{aligned}$$

And density matrices are

$$\begin{aligned} \mathbf{a} > \mathbf{A}_0 : \qquad \rho_{\mathbf{a}\mathbf{p}} = \mathbf{0}, \quad \kappa_{\mathbf{a}\mathbf{p}} = \mathbf{0}, \\ i \leq \mathbf{A}_0 : \qquad \rho_{i\mathbf{p}} = \delta_{i\mathbf{p}}, \quad \kappa_{i\mathbf{p}} = \mathbf{0}, \end{aligned}$$

Obviously: The study of graphs and their properties

Graphs are made of:

- Nodes (↔ our vertices)
- Edges connecting the nodes (\leftrightarrow our propagators)

Applied to various domains and situations:

- Search engines
- Task attribution
- Energy grid
- Quantum mechanics
- And many more...

- \Rightarrow Exhibit symmetry properties
- \Rightarrow Do not distinguish between directed and undirected diagrams

 \tilde{a}_{ij} indicate the number of edges going from node *i* to node *j*

- \Rightarrow No such symmetry properties
- \Rightarrow Carry more detailed information for directed graphs

Symmetry under the exchange of two vertices

 \Rightarrow Symmetry under simultaneous exchange associated rows and columns

Disconnected diagram

 \Rightarrow Matrix recastable as block-matrix

$$\begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \Leftrightarrow \qquad \qquad \clubsuit$$

NetworkX: A Python package for graph theory

- Create all kinds of graphs
- Extract adjacency matrices and all kinds of information
- Perform all sorts of operations on the graphs
- Adress some specific problems solved with graphs

Each vertex belongs to $\Omega^{[2]}$ or $\Omega^{[4]}$

 \Rightarrow For each vertex *i*, $\sum_{i} (a_{ij} + a_{ji})$ is 2 or 4

No self-contraction

 \Rightarrow Every diagonal element is zero

No loop between two vertices

 \Rightarrow Either a_{ij} or a_{ji} is zero

Every propagator coming out of the operator vertex goes upward

 \Rightarrow First column of the matrix is zero

• First test all possible values for first element

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \dots$$

• Then take output matrices and do the same for second element

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \dots$$

 \Rightarrow Produces all possible matrices

Test afterwards to exclude "unphysical" matrices

 \Rightarrow Time and computer memory wasted

To avoid generating too many matrices:

- Fill the matrices "vertex-wise"
- Leave first column blank
- Iterate on a_{ij} only if a_{ji} is zero
- Check the degree of each vertex before moving on

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & a_{32} & 0 \end{pmatrix}$$

Now, use Python / NetworkX to avoid:

- Matrices appearing twice
- Matrices associated to vanishing graphs (e.g. loop between a set of vertices)
- Matrices associated to topologicaly identical diagrams

 \Rightarrow You're good to go!

Different options:

• Directly from NetworkX using dot

- Using the feynmp LATEX instructions:
 - Use NetworkX functions to get useful graph structure info
 - Have your code write the feynmp instructions in your .tex file

- Extract graph structure info as well
 - \rightarrow Possible to associate labels with vertices, propagators, etc.
 - \rightarrow Can use tests on subgraphs, in- and out-degree, topological sorts...
- Have your code write the corresponding equations in your .tex file

After having the code to run at order 4, obtain...

...and 388 others!

More than 10 000 at order 5 $\,$