Recent developments in Bogoliubov Many-Body Perturbation Theory

Pierre Arthuis

PHENIICS Fest
Université Paris-Saclay - May 30th 2017

Outline

(1) Motivation
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

Outline

cea
(1) Motivation
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

Quantum many-body methods

Expansion methods around unperturbed product state

On symmetry breaking

Symmetry breaking helps incorporating non-dynamical correlations:

- Superfluid character: $U(1)$ (particle number)
- Deformations: $\operatorname{SU}(2)$ (angular momentum)

But nuclei carry good quantum numbers (e.g. number of particles)
\Rightarrow Symmetries must eventually be restored

Quantum many-body methods

MBPT: Recently (re)implemented with SRG-evolved $\mathrm{H}_{\text {[Tichai et al. 2016] }}$ GSCGF, BCC: Recently proposed and implemented [Somà et al. 2011, Signoracci et al. 2014] Sym.-res. BCC \& sym.-res. BMBPT: Recently proposed [Duguet 2015, Duguet \& Signoracci 2016]

Quantum many-body methods

MBPT: Recently (re)implemented with SRG-evolved H [Tichai etal. 2006] GSCGF, BCC: Recently proposed and implemented [somè et al. 2011, Signoracci et al. 2014] Sym.-res. BCC \& sym.-res. BMBPT: Recently proposed [Duguet 2015, Duguet \& Signoraci 2016]

Outline

(1) Motivation
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

Bogoliubov Many-Body Perturbation Theory

(1) Use a Bogoliubov vacuum $|\Phi\rangle$ with $\beta_{k}|\Phi\rangle=0$ for all k
(2) Define grand potential operator Ω from chiral interaction

$$
\Omega \equiv H-\lambda A
$$

then normal-order and split: $\Omega=\Omega_{0}+\Omega_{1}$
(3) Define evolved state in imaginary time

$$
|\Psi(\tau)\rangle \equiv \mathcal{U}(\tau)|\Phi\rangle=e^{-\tau \Omega_{0}} T e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
$$

(4) Expand and truncate the grand potential kernel $\Omega(\tau) \equiv\langle\Psi(\tau)| \Omega|\Phi\rangle \ldots$
...and the norm kernel $N(\tau) \equiv\langle\Psi(\tau) \mid \Phi\rangle$
(5) Extract ground state energy via

$$
\mathrm{E}_{0}=\lim _{\tau \rightarrow \infty} \frac{\Omega(\tau)}{N(\tau)}=\lim _{\tau \rightarrow \infty} \omega(\tau)
$$

Expansion of the grand potential kernel

Inserting the operator Ω at time 0 and expanding

$$
\begin{aligned}
\mathrm{E}_{0}= & \lim _{\tau \rightarrow \infty} \frac{\langle\Psi(\tau)| \Omega|\Phi\rangle}{\langle\Psi(\tau) \mid \Phi\rangle} \\
= & \langle\Phi|\left\{\Omega(0)-\int_{0}^{\infty} d \tau_{1} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega(0)\right]\right. \\
& \left.+\frac{1}{2!} \int_{0}^{\infty} d \tau_{1} d \tau_{2} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega_{1}\left(\tau_{2}\right) \Omega(0)\right]+\ldots\right\}|\Phi\rangle_{c}
\end{aligned}
$$

Then expressing the grand potential in the qp basis

$$
\Omega=\Omega^{00}+\frac{1}{1!} \sum_{k_{1} k_{2}} \Omega_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{\Omega_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+\Omega_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\}+\ldots
$$

Expansion of the grand potential kernel

$$
\begin{aligned}
& \mathrm{E}_{0}=\sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!} \sum_{i_{0}+j_{0}=2,4} \int_{0}^{\infty} d \tau_{1} \ldots d \tau_{p} \\
& i_{p}+j_{\rho}=2,4
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\substack{I_{1} \ldots I_{i_{p}} \\
I_{i_{p}+1} \ldots I_{i_{p}+j_{p}}}}{ } \\
& \times\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \ldots \beta_{k_{k_{1}}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{k_{1}+j_{1}}}\left(\tau_{1}\right) \ldots \beta_{k_{k_{1}+1}}\left(\tau_{1}\right) \ldots\right. \\
& \ldots \beta_{l_{1}}^{\dagger}\left(\tau_{p}\right) \ldots \beta_{l_{p}}^{\dagger}\left(\tau_{p}\right) \beta_{l_{i_{p}+j_{p}}}\left(\tau_{p}\right) \ldots \beta_{l_{p}+1}\left(\tau_{p}\right) \\
& \left.\times \beta_{m_{1}}^{\dagger}(0) \ldots \beta_{m_{i 0}}^{\dagger}(0) \beta_{m_{i_{0}+j_{0}}}(0) \ldots \beta_{m_{i_{0}+1}}(0)\right]|\Phi\rangle_{c}
\end{aligned}
$$

All contributions computable algebraically and diagramatically

First- and second-order diagrams

Diagrammatic representation of the grand potential Ω

Extracting and applying diagrammatic rules

$$
\mathrm{E}_{0}^{(1+2)}=\quad \begin{gathered}
0 \\
\Omega^{00}
\end{gathered}
$$

Outline
 cea

(1) Motivation
(2) On Bogoliubov Many-Body Perturbation Theory
(3) Recent progress

Third-order diagrams

Derivation of all diagrams up to third order

Validation of formal derivation

BMBPT must match standard MBPT in Slater determinant limit
\rightarrow Matching must be true at each order
\rightarrow Proof of consistent formalism for BMBPT

Validation of formal derivation

BMBPT must match standard MBPT in Slater determinant limit
\rightarrow Matching must be true at each order
\rightarrow Proof of consistent formalism for BMBPT

BMBPT(3) diagrams match MBPT(3) ones exactly
Canonical HF-MBPT diagrams were recovered from only one BMBPT

Proof of principle calculations

First BMBPT(2) proof of principle calculation of ${ }^{20} \mathrm{O}$:

using NN SRG-evolved chiral interaction
On MCPT:

- Multi-configurational MBPT
- Alternative method for open-shell nuclei

Isotopic chains calculations at second order

First BMBPT(2) calculations on O, Ca and Sn isotopic chains

using NN and 3N SRG-evolved chiral interaction
Same chains under investigation at third order at the moment

Numerical derivations of higher orders

Use of diagrammatic rules and graph theory
\Rightarrow Produce graphs and their expressions numerically:

- Produce higher orders diagrams
- 59 diagrams at order 4
- 568 diagrams at order 5
- Extend to three-body diagrams
- 15 diagrams at order 3
- 337 diagrams at order 4
- 10148 diagrams at order 5

Prospects

- Go up to fourth order
\rightarrow Even better than other ab initio methods?
\rightarrow Test for computational cost
- Push BMBPT to heavier nuclei
\rightarrow Can go further than other ab initio methods
\rightarrow Good test for the computational cost
- Implement particle-number restored BMBPT for the first time
\rightarrow Required for precise study of open-shell nuclei
\rightarrow Proof of concept of symmetry-restored BMBPT / BCC
- Ab initio driven EDF method [T. Duguet et al. (2015)]
\rightarrow Safe/correlated/improvable off-diagonal EDF kernels
\rightarrow Based on PNR-BMBPT
- Ab initio expansion methods are a powerful framework
\checkmark Rigorous approach to the many-body problem
X Computationally intensive (polynomial scaling)
\boldsymbol{x} Cannot describe the whole nuclear chart
- Many-Body Perturbation Theory and its daughters are one of them
\checkmark Computationally friendly
\checkmark Potentially as precise as others when using SRG-evolved H
- BMBPT has been formulated and is being implemented
\checkmark First derivation and calculations up to third order
\checkmark Appropriate framework to tackle open-shell nuclei
\checkmark Systematic studies at third and fourth order to come
- Symmetry-restored BMBPT is the next step

Our collaborators

BMBPT Project

P. Arthuis
T. Duguet
J.-P. Ebran

On broader aspects
M. Drissi
J. Ripoche
$\begin{array}{ll}\text { TECHNISCHE } & \text { A. Tichai } \\ \text { UNIVERSIAAT } \\ \text { DARMSTADT } & \text { R. Roth }\end{array}$

$\frac{\text { MICHIGAN STATE }}{\text { UNIVERSITY }}$
H. Hergert

Backup slides!

On Nuclear Structure Theory

Different methods to treat the whole nuclear chart:

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
"Exact" ab initio methods

- Since the 80 's
- GFMC, NCSM, FY

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
Ab initio approaches for closed-shell nuclei

- Since the 2000's
- DSCGF, CC, IMSRG

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
Non-perturbative ab initio approaches for open-shell nuclei

- Since the 2010's
- GSCGF, BCC, MR-IMSRG

Evolution of the ab initio reach

Courtesy of V. Soma, T. Duguet
Ab initio shell model

- Since 2014
- Effective interaction via CC/IMSRG

What makes a method ab initio

(1) Consider point-like nucleons as appropriate degrees of freedom
(2) Use interactions rooted in underlying theory (i.e. QCD)
(3) Expand the many-body Schrödinger equation systematically
(4) Truncate at a given order and solve using computational methods
(5) Estimate systematic error

Nuclear many-body methods

Mean Field

Perturbation theory
Nonperturbative methods

Status and perspectives of $a b$ initio methods

Recent developments: symmetry breaking and restoration \rightarrow Access to open-shell nuclei

Reach some isotopic chains for medium-mass nuclei
Systematic and predictive methods: estimates of theoretical error

```
NN+3N
```


Reminder on second quantization

Introduce creation a_{μ}^{+}and annihilation a_{μ} operators acting on \mathcal{F} such that

- a_{μ} and a_{μ}^{+}are hermitian conjugate: $a_{\mu}^{+}=\left(a_{\mu}\right)^{\dagger}$
- a_{μ} annihilates a particle in state $|\mu\rangle$:

$$
\begin{aligned}
a_{\mu}: \mathcal{H}_{N} & \rightarrow \mathcal{H}_{N-1} \\
|\alpha \beta \ldots\rangle & \rightarrow a_{\mu}|\alpha \beta \ldots\rangle \equiv 0 \quad \text { if } \mu \text { is not initially occupied } \\
|\mu \beta \ldots\rangle & \rightarrow a_{\mu}|\mu \beta \ldots\rangle \equiv|\beta \ldots\rangle \text { if } \mu \text { is initially occupied }
\end{aligned}
$$

- a_{μ}^{+}creates a particle in the state $|\mu\rangle$:

$$
\begin{aligned}
a_{\mu}^{+}: \mathcal{H}_{N} & \rightarrow \mathcal{H}_{N+1} \\
|\alpha \beta \ldots\rangle & \rightarrow a_{\mu}^{+}|\alpha \beta \ldots\rangle \equiv|\mu \alpha \beta \ldots\rangle \text { if } \mu \text { is not initially occupied } \\
|\alpha \ldots \mu \ldots\rangle & \rightarrow a_{\mu}^{+}|\alpha \ldots \mu \ldots\rangle \equiv 0 \quad \text { if } \mu \text { is initially occupied }
\end{aligned}
$$

- a_{μ} and a_{μ}^{+}obey anticommutation relationships

$$
\left\{a_{\mu}^{+}, a_{\nu}^{+}\right\}=0 \quad, \quad\left\{a_{\mu}, a_{\nu}\right\}=0 \quad, \quad\left\{a_{\mu}, a_{\nu}^{+}\right\}=\delta_{\mu \nu}
$$

Use of the creation and annihilation operators

- Create Slater determinants:

$$
|\alpha \beta \ldots\rangle=a_{\alpha}^{+} a_{\beta}^{+} \ldots|0\rangle
$$

- Write operators:

One-body:

$$
F=\sum_{\alpha \beta} f_{\alpha \beta} a_{\alpha}^{+} a_{\beta}
$$

using matrix elements of the operator:

$$
f_{\alpha \beta} \equiv\langle i: \alpha| f(i)|i: \beta\rangle
$$

And two-body:

$$
G=\frac{1}{2} \sum_{\alpha \beta \gamma \delta} g_{\alpha \beta \gamma \delta} a_{\alpha}^{+} a_{\beta}^{+} a_{\delta} a_{\gamma}
$$

with matrix elements

$$
g_{\alpha \beta \gamma \delta} \equiv\langle i: \alpha ; j: \beta| g(i, j)|i: \gamma ; j: \delta\rangle
$$

Bogoliubov transformation

Bogoliubov transformation connects qp operators $\left\{\beta_{k} ; \beta_{k}^{\dagger}\right\}$ to particle ones:

$$
\begin{aligned}
\beta_{k} & =\sum_{p} U_{p k}^{*} a_{p}+V_{p k}^{*} a_{p}^{\dagger} \\
\beta_{k}^{\dagger} & =\sum_{p} U_{p k} a_{p}^{\dagger}+V_{p k} a_{p}
\end{aligned}
$$

They obey anticommutation rules

$$
\left\{\beta_{k_{1}}, \beta_{k_{2}}\right\}=0 \quad, \quad\left\{\beta_{k_{1}}^{\dagger}, \beta_{k_{2}}^{\dagger}\right\}=0 \quad, \quad\left\{\beta_{k_{1}}, \beta_{k_{2}}^{\dagger}\right\}=\delta_{k_{1} k_{2}}
$$

Bogoliubov transformation can be written in matrix form

$$
\binom{\beta}{\beta^{\dagger}}=W^{\dagger}\binom{a}{a^{\dagger}}
$$

where

$$
W \equiv\left(\begin{array}{ll}
U & V^{*} \\
V & U^{*}
\end{array}\right)
$$

On contractions

Contractions and normal product:

$$
\overparen{A B} \equiv A B-: A B: \quad \text { with } \quad \overparen{A B}=\frac{\langle\Phi| A B|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}
$$

Elementary contractions:

$$
\begin{aligned}
\widehat{\sigma}_{\alpha}^{+} \beta_{\beta}^{+}=\frac{\langle\Phi| \beta_{\alpha}^{+} \beta_{\beta}^{+}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 & \beta_{\alpha}^{+} \beta_{\beta}=\frac{\langle\Phi| \beta_{\alpha}^{+} \beta_{\beta}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \\
\sqrt{\beta_{\alpha} \beta_{\beta}^{+}}=\frac{\langle\Phi| \beta_{\alpha} \beta_{\beta}^{+}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=\delta_{\alpha \beta} & \beta_{\alpha} \beta_{\beta}=\frac{\langle\Phi| \beta_{\alpha} \beta_{\beta}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0
\end{aligned}
$$

Wick's theorem

$$
\begin{aligned}
& A B C D \ldots Y Z=\overparen{A B C D} \ldots \bar{Y}-\overparen{A C B D} \ldots Y Z+\overparen{A D B C} \ldots Y Z+\ldots \\
& +\overparen{A B C D} \ldots: Y Z:-\overparen{A} \subset \bar{\square} \ldots: Y Z:+\overparen{A D} B C \ldots: Y Z:+\ldots \\
& +\overparen{A B}: C D \ldots Y Z:-\overparen{A C}: B D \ldots Y Z:+\overparen{A D}: B C \ldots Y Z:+\ldots \\
& +: A B C D \ldots Y Z: \\
& \beta_{\alpha}^{+} \beta_{\beta}^{+} \beta_{\delta} \beta_{\gamma}=\beta_{\alpha}^{+} \beta_{\beta}^{+} \beta_{\delta} \beta_{\gamma}-\beta_{\alpha}^{+} \beta_{\delta} \beta_{\beta}^{+} \beta_{\gamma}+\beta_{\alpha}^{+} \beta_{\gamma} \beta_{\beta}^{+} \beta_{\delta} \\
& +\overparen{\beta_{\alpha}^{+}}{ }_{\beta}^{+}: \beta_{\delta} \beta_{\gamma}:-\overparen{\beta_{\alpha}^{+} \beta_{\delta}}: \beta_{\beta}^{+} \beta_{\gamma}:+\beta_{\alpha}^{+} \beta_{\gamma}: \beta_{\beta}^{+} \beta_{\delta}: \\
& +{ }_{\beta}^{+} \beta_{\delta}: \beta_{\alpha}^{+} \beta_{\gamma}:-\beta_{\beta}^{+} \beta_{\gamma}: \beta_{\alpha}^{+} \beta_{\delta}:+\overparen{\beta_{\delta} \beta_{\gamma}}: \beta_{\alpha}^{+} \beta_{\beta}^{+}: \\
& +: \beta_{\alpha}^{+} \beta_{\beta}^{+} \beta_{\delta} \beta_{\gamma}:
\end{aligned}
$$

Time-dependent kernels

Introduce time-dependent kernel for generic operator O

$$
O(\tau) \equiv\langle\Psi(\tau)| O|\Phi\rangle
$$

or other operator of interest

$$
\begin{aligned}
N(\tau) & \equiv\langle\Psi(\tau)| \mathbb{1}|\Phi\rangle \\
H(\tau) & \equiv\langle\Psi(\tau)| H|\Phi\rangle \\
A(\tau) & \equiv\langle\Psi(\tau)| A|\Phi\rangle \\
\Omega(\tau) & \equiv\langle\Psi(\tau)| \Omega|\Phi\rangle
\end{aligned}
$$

and reduced kernel

$$
\mathcal{O}(\tau) \equiv \frac{O(\tau)}{N(\tau)}
$$

Decomposition of the time-dependent kernels

Kernels can be decomposed as

$$
\begin{aligned}
& N(\tau)=\sum_{\mathrm{A} \in \mathbb{N}} \sum_{\mu} e^{-\tau \Omega_{\mu}^{\mathrm{A}}\left|\left\langle\Phi \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle\right|^{2}} \\
& H(\tau)=\sum_{\mathrm{A} \in \mathbb{N}} \sum_{\mu} \mathrm{E}_{\mu}^{\mathrm{A}} e^{-\tau \Omega_{\mu}^{\mathrm{A}}\left|\left\langle\Phi \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle\right|^{2}} \\
& A(\tau)=\sum_{\mathrm{A} \in \mathbb{N}} \sum_{\mu} \mathrm{A} e^{-\tau \Omega_{\mu}^{\mathrm{A}}}\left|\left\langle\Phi \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle\right|^{2} \\
& \Omega(\tau)=\sum_{\mathrm{A} \in \mathbb{N}} \sum_{\mu} \Omega_{\mu}^{\mathrm{A}} e^{-\tau \Omega_{\mu}^{\mathrm{A}}\left|\left\langle\Phi \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle\right|^{2}}
\end{aligned}
$$

Large time limit of the kernels

Defining the large τ limit of a kernel via

$$
O(\infty) \equiv \lim _{\tau \rightarrow \infty} O(\tau)
$$

gives

$$
\begin{aligned}
& N(\infty)=e^{-\tau \Omega_{0}^{A_{0}}}\left|\left\langle\Phi \mid \Psi_{0}^{A_{0}}\right\rangle\right|^{2} \\
& H(\infty)=E_{0}^{A_{0}} e^{-\tau \Omega_{0}^{A_{0}}}\left|\left\langle\Phi \mid \Psi_{0}^{A_{0}}\right\rangle\right|^{2} \\
& A(\infty)=A_{0} e^{-\tau \Omega_{0}^{A_{0}}}\left|\left\langle\Phi \mid \Psi_{0}^{A_{0}}\right\rangle\right|^{2} \\
& \Omega(\infty)=\Omega_{0}^{A_{0}} e^{-\tau \Omega_{0}^{A_{0}}}\left|\left\langle\Phi \mid \Psi_{0}^{A_{0}}\right\rangle\right|^{2}
\end{aligned}
$$

Extracting observables

From the previous relations,

$$
\begin{aligned}
H(\infty) & =\mathrm{E}_{0}^{\mathrm{A}_{0}} N(\infty) \\
A(\infty) & =\mathrm{A}_{0} N(\infty) \\
\Omega(\infty) & =\Omega_{0}^{\mathrm{A}_{0}} N(\infty)
\end{aligned}
$$

Or directly from the reduced kernels

$$
\begin{aligned}
\mathcal{H}(\infty) & =E_{0}^{A_{0}} \\
\mathcal{A}(\infty) & =A_{0} \\
\Omega_{r}(\infty) & =\Omega_{0}^{A_{0}}
\end{aligned}
$$

Expansion of the norm kernel

Expanding norm kernel through the evolution operator:

$$
\begin{aligned}
N(\tau)= & \langle\Phi| \mathcal{U}(\tau)|\Phi\rangle \\
= & \langle\Phi| e^{-\tau \Omega_{0}} \mathcal{U}_{1}(t)|\Phi\rangle \\
= & e^{-\tau \Omega_{00}}\langle\Phi| \mathrm{T} e^{-\int_{0}^{\tau} d t \Omega_{1}(t)}|\Phi\rangle \\
= & e^{-\tau \Omega^{00}}\langle\Phi|\left\{1-\int_{0}^{\tau} d \tau_{1} \Omega_{1}\left(\tau_{1}\right)\right. \\
& \left.\quad \quad \frac{1}{2!} \int_{0}^{\tau} d \tau_{1} d \tau_{2} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega_{1}\left(\tau_{2}\right)\right]+\ldots\right\}|\Phi\rangle
\end{aligned}
$$

Expansion of the norm kernel

Eventually, one gets

$$
\begin{aligned}
& N(\tau)=e^{-\tau \Omega^{00}}\left\{\sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!} \sum_{i_{1}+j_{1}=2,4} \int_{0}^{\tau} d \tau_{1} \ldots d \tau_{p}\right. \\
& i_{p}+j_{p}=2,4 \\
& \times \sum_{\substack{k_{1} \ldots k_{i_{1}} \\
k_{1}+1 \ldots k_{1}+j_{1}}} \frac{\Omega_{k_{1} \ldots k_{1}}^{i_{1} j_{1}} k_{1+1} \ldots k_{1}+j_{1}}{\left(i_{1}\right)!\left(j_{1}\right)!} \cdots \frac{\Omega_{l_{1} \ldots i_{p}}^{i_{p} j_{p}} l_{p+1} \ldots i_{p+j}}{\left(i_{p}\right)!\left(j_{p}\right)!} \\
& \underset{\substack{I_{1} \ldots i_{i_{p}} \\
I_{i_{p}+1} \ldots I_{i_{p}+j_{p}}}}{ } \\
& \times\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \ldots \beta_{k_{i_{1}}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{k_{1}+j_{1}}}\left(\tau_{1}\right) \ldots \beta_{k_{k_{1}+1}}\left(\tau_{1}\right) \ldots\right. \\
& \left.\left.\ldots \beta_{l_{1}}^{\dagger}\left(\tau_{p}\right) \ldots \beta_{l_{i_{p}}}^{\dagger}\left(\tau_{p}\right) \beta_{l_{i_{p}+j_{p}}}\left(\tau_{p}\right) \ldots \beta_{l_{i_{p}+1}}\left(\tau_{p}\right)\right]|\Phi\rangle\right\}
\end{aligned}
$$

BMBPT propagators

$$
\begin{aligned}
k_{2} \tau_{2} \\
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \\
G_{k_{1} k_{2}}^{--(0)}\left(\tau_{1}, \tau_{2}\right) \quad G_{k_{1} k_{2}}^{++(0)}\left(\tau_{1}, \tau_{2}\right) \\
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
G_{k_{1} k_{2}}^{++(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}^{\dagger}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}\left(\tau_{1}\right) \beta_{k_{2}}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
k_{1} \\
\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}\left(\tau_{1}\right) \beta_{k_{2}}^{\dagger}\left(\tau_{2}\right)\right]|\Phi\rangle \\
\langle\Phi \mid \Phi\rangle
\end{aligned}
$$

Grand potential vertices

And grand potential vertices:
$\Omega^{[0]}=\quad \stackrel{\bullet}{\Omega^{00}}$

$\Omega^{[4]}=$

BMBPT diagrammatic rules

Then there are some rules to follow:

- Order $p \rightarrow p$ vertices $\Omega^{i j}\left(\tau_{k}\right), 1 O^{i j}(0)$ connected via propagators
- A good labelling convention
- Make all possible contractions
- Keep only topologically distinct diagrams
- Sum all time labels from 0 to τ
- Sign factor $(-1)^{p+n_{c}}$
- Symmetry factors: equivalent lines and exchangeable vertices
- Sign factor linked to reading direction

BMBPT diagrammatic rules

Plus some selection rules:

- No anomalous propagators
\rightarrow Same number of creators and operators
- Propagators linking two same vertices
\rightarrow Same direction
- No contraction of a vertex on itself
- Propagators starting from vertex at time 0 \rightarrow Moving upward

Generic operator vertices

Let us draw some operator vertices:

Zero- and first-order diagrams

Applying all the previous rules:

Second-order diagrams

Slater determinant limit

Bogoliubov transformation simplifies to

$$
\begin{array}{lll}
a>\mathrm{A}_{0}: & c_{a}=\beta_{a}, & c_{a}^{\dagger}=\beta_{a}^{\dagger}, \\
i \leq \mathrm{A}_{0}: & c_{i}=\beta_{i}^{\dagger}, & c_{i}^{\dagger}=\beta_{i} .
\end{array}
$$

U and V matrix elements are

$$
\begin{array}{lll}
a>\mathrm{A}_{0}: & V_{a k}=0, & U_{a k}=\delta_{a k}, \\
i \leq \mathrm{A}_{0}: & V_{i k}=\delta_{i k}, & U_{i k}=0 .
\end{array}
$$

And density matrices are

$$
\begin{array}{lll}
a>\mathrm{A}_{0}: & \rho_{a p}=0, & \kappa_{a p}=0 \\
i \leq \mathrm{A}_{0}: & \rho_{i p}=\delta_{i p}, & \kappa_{i p}=0,
\end{array}
$$

What is graph theory?

Obviously: The study of graphs and their properties
Graphs are made of:

- Nodes (\leftrightarrow our vertices)
- Edges connecting the nodes (\leftrightarrow our propagators)

Applied to various domains and situations:

- Search engines
- Task attribution
- Energy grid
- Quantum mechanics
- And many more...

Graphs and adjacency matrix

$a_{i j}$ indicate the number of edges connecting two nodes

$$
A=\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right) \Leftrightarrow
$$

\Rightarrow Exhibit symmetry properties
\Rightarrow Do not distinguish between directed and undirected diagrams

Graphs and oriented adjacency matrix

$\tilde{a}_{i j}$ indicate the number of edges going from node i to node j

$$
\tilde{A}=\left(\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \Leftrightarrow
$$

\Rightarrow No such symmetry properties
\Rightarrow Carry more detailed information for directed graphs

Other graph properties tied to adjacency matrices

Symmetry under the exchange of two vertices
\Rightarrow Symmetry under simultaneous exchange associated rows and columns
Disconnected diagram
\Rightarrow Matrix recastable as block-matrix

$$
\left(\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \Leftrightarrow
$$

Graphs and Python

NetworkX: A Python package for graph theory

- Create all kinds of graphs
- Extract adjacency matrices and all kinds of information
- Perform all sorts of operations on the graphs
- Adress some specific problems solved with graphs

Constraints from the diagrammatic rules

Each vertex belongs to $\Omega^{[2]}$ or $\Omega^{[4]}$
\Rightarrow For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2 or 4
No self-contraction
\Rightarrow Every diagonal element is zero

No loop between two vertices
\Rightarrow Either $a_{i j}$ or $a_{j i}$ is zero

Every propagator coming out of the operator vertex goes upward
\Rightarrow First column of the matrix is zero

Generate all adjacency matrices: Going brute force

- First test all possible values for first element

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow \ldots
$$

- Then take output matrices and do the same for second element

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow \ldots
$$

\Rightarrow Produces all possible matrices
Test afterwards to exclude "unphysical" matrices
\Rightarrow Time and computer memory wasted

Generate all adjacency matrices: A smarter way

To avoid generating too many matrices:

- Fill the matrices "vertex-wise"
- Leave first column blank
- Iterate on $a_{i j}$ only if $a_{j i}$ is zero
- Check the degree of each vertex before moving on

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & a_{23} \\
0 & a_{32} & 0
\end{array}\right)
$$

Some additional tests

Now, use Python / NetworkX to avoid:

- Matrices appearing twice
- Matrices associated to vanishing graphs (e.g. loop between a set of vertices)
- Matrices associated to topologicaly identical diagrams
\Rightarrow You're good to go!

How to draw these nice graphs

Different options:

- Directly from NetworkX using dot

- Using the feynmp ${ }^{A T} T_{E X}$ instructions:
- Use NetworkX functions to get useful graph structure info
- Have your code write the feynmp instructions in your .tex file

How to obtain their expression without any work

- Extract graph structure info as well
\rightarrow Possible to associate labels with vertices, propagators, etc.
\rightarrow Can use tests on subgraphs, in- and out-degree, topological sorts...
- Have your code write the corresponding equations in your .tex file

$$
\frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \frac{O_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{1} k_{2} k_{3} k_{8}}^{04} \Omega_{k_{5} k_{6} k_{7} k_{4}}^{31} \Omega_{k_{8} k_{5} k_{6} k_{7}}^{13}}{\left(+E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(+E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}+E_{k_{6}}+E_{k_{7}}\right)\left(+E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{8}}\right)}
$$

Time to cook some diagrams

After having the code to run at order 4, obtain...

...and 388 others!

More than 10000 at order 5

