

Determination of the Neutrino Mass Hierarchy with JUNO Experiment

Qinhua Huang, qinhua.huang@llr.in2p3.fr Laboratoire Leprince-Ringuet, École Polytechnique

Neutrinos in Standard Model and the Mass Hierarchy

• The Neutrinos are three of the elementary particles in the Standard Model (SM). They are only sensitive to the weak interaction and the interaction occurs in their flavour eigenstates, i.e., ν_e , ν_μ and ν_τ (Figure 1). The flavour eigenstates are actually the combination of the mass eigenstates, ν_1 , ν_2 and ν_3 :

$$|\nu_{\alpha}
angle = \sum_{j} U^*_{\alpha j} |\nu_{j}
angle ,$$

with $\alpha = (e, \mu, \tau), j = (1, 2, 3), U_{\alpha j}$ represents the Pontecorvo–Maki–Nakagawa–Sakata matrix.

• When neutrinos propagate in space-time, their flavours can change according to the oscillation probability, which can be expressed as:

JUNO & Detector

The Jiangmen Underground Neutrino Observatory(JUNO) is a multipurpose underground Neutrino experiment. It will be located in Jinji town, Kaiping, Jiangmen, Guangdong province, China. The underground laboratory will be constructed 700m underground to reduce the background of cosmic particles.

$$P_{\alpha\beta} = \sum_{j,k,j\neq k} U^*_{\alpha j} U_{\beta j} U_{\alpha k} U^*_{\beta k} \exp\left[-i\frac{\Delta m_{jk}^2 L}{2E}\right],$$

with $m_{jk}^2 = m_j^2 - m_k^2$ are the mass differences, L is oscillation distance and E is the neutrino energy.

• In many experiments, for example, Super-Kamiokande Observatory and the Sudbury Neutrino Observatory, the neutrino oscillation has been observed, therefore, the neutrinos should be massive. Since the oscillation can only characterise the mass differences between the neutrino mass eigenstates, two possible mass hierarchies (MH) are suggested : Normal Hierarchy (NH) and Inverted Hierarchy (IH).

Figure 1: Elementary particles in SM

Figure 2: The two possible orderings of the neutrino mass eigenstates.

Figure 3: Oscillation in the KamLAND reactor neutrino experiment. From A. Gando et al., Phys. Rev. D83 (2011) 052002.

The main scientific goal is the determination of the neutrino MH by detecting reactor antineutrinos from the Yangjiang and Taishan (see the map) nuclear power plants (NPPs). JUNO consists of a central detector, a water Cherenkov detector and a muon tracker.

Double Calorimetry & Physics optimisation

A double calorimetry PMT system is used in JUNO to achieve 3% of energy resolution. The system consists of 18000 20"-PMT (LPMT) and 25000 3"-PMT (SPMT). In JUNO the LPMTs are usually hit by several photons at the same time, this may cause non-linear energy measurement. The SPMTs, however, measure energy via "photon counting", as they almost detect either one single photon or zero. So the SPMTs will serve to disentangle the non-linear effects in the calibration of the non-uniform response of the detector.

Figure 4: The SPMTs surround the LPMT.

Figure 5: The reconstructed energy is biased for LPMTs compared to Monte-Carlo (MC).

The JUNO collaboration has recently signed the bidding with two Chinese companies for both

The central detector is made of an acrylic sphere containing 20kt of liquid scintillator (LS). The optical coverage will attain 75% with a double calorimetry Photomultiplier Tube (PMT) system. This setup will achieve $3\%/\sqrt{E}$ (MeV) energy resolution. The central detector is submerged in a water pool, to be shielded from natural radio-activity from the surrounding rock. The water pool is equipped with PMTs to serve as a veto water Cherenkov detector. The muon tracker, a.k.a top tracker, will be built to cover the water pool and serve to further suppress the background caused by cosmic muons. A structure is needed to support the center detector and to install the PMT instrument system.

LPMT and SPMT system. Based on the SPMT characteristics, we are currently focusing on the optimisation of the SPMT system and the test of its reliability. We use the MC to estimate the potential degradation on light collection (energy resolution) caused by the support structure, since the structure forces to reduce the number of SPMTs installed.

																									¢)-(θ	m	a	р																			
	1.	5		=	÷	-		7=	-	100	_	-	=	÷_^	- 	=	-		L	, F	.=		-	-	<u> </u>		2	ł	-	== 2	-	-	=.	<u> </u>		7	-	2=	1		-	-	1			1	= ;	=	Ę.
		÷	ð. R					i J		i N	j. Q	-	建設								1							14. 18	÷.				18 50		Э. Кр.						i. A							₹. 350-	100 201
		1						Į.							11	ų.						24	98 10	i.	8			<u>13</u>	8	66	ġ					55		8	55						99			24	
				268 339		66) 201	出版	定。 段:	00 101	e Se	883 (14)) 6	245 1953	5	902 248		95. 90	100 200		55) 1977	皇	242 988	30 30	ій. 29 і				- 343 1955							22 22.				300 555		83. 2011 -		922 1939 -	0.6 8.3	alar 322	- 600 - 1992	2.1	6945 (224)	1225 1955
						W				Į.												W																											
	0.	5	2002 0000		\$ \$					i.													888 660 7777																										
				9888 9888		885 886							935 935	99 813	888 1885			9999 9999	8 é 8 s	8888 8888	: 23 : 23	669) 669)	- 388 - 388						68 (98 (6 686 6 686						8 88 8 88	582 582			885 : 885 :		9385 9385	99.98 92.95					200
	,	<u>م</u>																			88					88					o :co 8 88						8 199 8 198			 1 (2)									22
	(88			2						83		18							353	3							1													88			88		
		100	5666 5908	18999 18999	2 8) 2 83	888 888					555 959	88 8 98 8	699 599	83 83		9 (8) 8 (8)		8888 8888	8 8 8 8	5555 5932	189) 1892	1993 1995	988 998		666 202	8 8 8 8		- 1666 19655	555 S 282 S		1 88 2 88) 833 9 889		6666 5558	5 68 5 585	223 : 225 :		6 56 9 86	666) 988	8888 8888	- 368 - 368	88 88 28 38				8668 8988	
_	0.	5	8440 0000 5555															- 444 開																											50000 0000 0000				
			Į.			N	-	ų.	N	ġ.			N)	2		ų,													ġ)					4												響			
		20 20 20 20 20 20 20 20 20 20 20 20 20 2	88) 201	925 925	18		開発	81. X4.		29 (1					333 703		88 20	988 600	8 8 1 2	933 770	10		10 20			22		82 192	91 (21 (33. 59				892 200										192 332
	_	1		12				io E		о Ц													00 123	2					90 9							200			200					ан 2. ј				39 39	
		-			ł	N.		1	12	ł.	Q A	-	资料		ė.						1				包括	1		語	<u>.</u>				99 12		¢.							1	-90 			19			12
_	1 /	5	-` <u>`</u> _+-	2	=" .		1	j	ć	and a	ء ا		-	="-	j	-		ļ	ē ,	Ì.	1			-			ŝ	,			-		1	2	é.	×.		2=	2	.]= ¹		-1 - 1	£.,	2			74	- 	é.
	1.0		-3			-	-				-2	2	-		-	***			_	1	Ť	· .			-	-1	(0						<u> </u>	1						<u> </u>	2					a	1	3

Figure 7: The energy resolution as a function of R^3 for different SPMT setups.

Apart from the determination of MH, JUNO detector will also be capable to investigate other physics, for example,

- Precision measurement of oscillation parameters θ_{12} , Δm_{21}^2 and $|\Delta m_{ee}^2|$,
- Supernova and diffuse supernova neutrinos,
- Solar neutrinos, Geoneutrinos, Sterile neutrinos...