

MAPSSIC

A novel CMOS intracerebral probe for brain imaging in freely moving rats

Luis Ammour

PHENIICS Fest

May 30-31 2017

What are anesthesia effects on neuroimaging studies?

How to perform simultaneous behavior studies and real-time neuroimaging?

To develop a pixelated β + sensitive imaging device

To limit annihilation rays and visible light sensitivity

To give real autonomy to the rat

PIXSIC, the first pixelated β^+ microprobe

Reverse-biased high resistivity silicon diodes

- β^+ sensitivity
- · Pixellated structure
- Wireless communication

Fully freely moving animal with PIXSIC

A : Pixellated probe; B : Readout electronic; C : Battery and communication system

Several experiments validated PIXSIC biological and pharmacological suitability.

[18F]-MPPF injection - Hippocampus implantation.

Spatial distribution evaluation validated!

Several experiments validated PIXSIC biological and pharmacological suitability.

[18F]-MPPF 2 mCi injection - Hippocampus and cerebellum implantations.

Uptake measurement validated!

Several experiments validated PIXSIC biological and pharmacological suitability.

[11C]-raclopride 2 mCi injection - Striatum and cerebellum implantations.

PIXSIC shows anesthesia bias on neuroimaging results!

PIXSIC : It works!

- First autonomous β^+ probe
- Validated in pharmacological studies
- Biocompatibility validated

... but it shows major limits :

- Mechanical robustness.
- Electronic noise.
- γ rays sensitivity.

CMOS MAPS technology

- Highly pixelated sensors.
- Direct amplification on the pixel.
- Data processing on the sensor.
- Low thickness of the sensitive volume.

Charged particles detection in MAPS

MAPSSIC project aims to :

- Develop a CMOS MAPS sensor
- Develop front-end electronics
- Create an autonomous system on the animal head and back
- Validate the biological compatibility (temperature, size ...)
- Ensure mechanical and electrical robustness

Use of Monte-Carlo simulations

GATE

Simulations of Preclinical and Clinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy

Sensitivity

	MAPSSIC	PIXSIC		
^{18}F	6.9	8.1		
^{-11}C	14.1	14.1		
^{15}O	36.5	n/a		
PIXSIC pixel vs MAPSSIC				
10 rows sensitivity				
($\times 10^{-2}$ evts/s/(Bq/mm ³))				

Positron sensitivity is compatible with biological experiments

 γ and e^- sensitivities are very low in typical biological volume sizes

Rat brain phantom

Simple brain model using 6 regions : cerebelum, striatum (left and right), other brain tissues and harderian glands (left and right)

Probe is inserted into left putamen region (LCPu), activity is distributed as in typical 11C-raclopride experiments

	β^+	e ⁻	γ
Cerebelum	0.00	0.04	0.01
L. CPu	86.27	2.80	0.19
R. CPu	0.00	0.25	0.00
Brain (other)	7.90	1.42	0.23
L. HG	0.00	0.29	0.10
R. HG	0.00	0.39	0.10

Relative sensitivity (%)

The probe is sensitive to local radioactivity

Energy deposits

Mean deposited energy spectra in a single pixel

	$\beta^+ E_{mean}$	$\beta^+ E_{peak}$
^{18}F	15 keV	6 keV
^{-11}C	13 keV	6 keV
^{-15}O	10 keV	7 keV

Noise level in biological medium should be low enough to allow detection

Sensitive layer thickness

Sensitive layer thickness is a trade-off between sensitivity and S/N ratio

Pixels size variation only influences deposited energy

IMIC-B sensor photography

Experimental testing setup

Experimental setup

Example image

Acquisition of sensor images over time (451 ms/frame) An incident particles leads to a cluster of activated pixels

We observe events pile-up at high count rates but a good linearity at low count rates

There is a good accordance between MC simulation and experimental sensitivity measurement in the linear region $(3.58 \times 10^2 \text{ evts/s/MBq})$

Attenuation

Typical positron attenuation profile (fitted by one exponential decay $I(l) = I_0 \times e^{-al}$ with linear coefficient $a = 4.8 mm^{-1}$)

Remote annihilation gammas source :

No significant difference with or without remote β + source.

Background noise (no source, no visible light) :

Low background noise : 9.0×10^{-4} events/s

Conclusion :

- CMOS MAPS are well suited for positron detection
- Our first sensor prototype is ready to be included in a probe setup

Outlook :

- Full probe design
- Control and acquisition electronics, backpack and connectivity
- Biocompatibility challenges (heat dissipation)
- Performances assessment in more realistic Monte-Carlo simulations and experimental conditions

Thank you for your attention

IMNC, Orsay IPHC. CPPM. CRNL, Lyon NeuroPSI. Marseille Strasbourg Orsay S. Fieux. L. Ammour. F. Lefebvre. M. Bautista. L. Zimmer J. Heymes, P. Gisquet-Verrier F. Pain, F. Gensolen, M. Kachel. L. Pinot, P. Pangaud, J. Baudot P. Laniece, C. Morel

M.-A. Verdier

