MAPSSIC
A novel CMOS intracerebral probe for brain imaging in freely moving rats

Luis Ammour

PHENIICS Fest
May 30–31 2017
Imaging brain on freely moving animal

What are anesthesia effects on neuroimaging studies?

How to perform simultaneous behavior studies and real-time neuroimaging?

RatCAP
Schulz et al., Nature Methods, 2011.

Motion tracking

Beta Microprobe
Pain et al., PNAS, 2002.
Project goals

To develop a pixelated β^+ sensitive imaging device

To limit annihilation rays and visible light sensitivity

To give real autonomy to the rat
PIXSIC, the first pixelated β^+ microprobe

Reverse-biased high resistivity silicon diodes

- β^+ sensitivity
- Pixellated structure
- Wireless communication

Fully freely moving animal with PIXSIC

A : Pixellated probe ; B : Readout electronic ; C : Battery and communication system
PIXSIC pharmacological validation

Several experiments validated PIXSIC biological and pharmacological suitability.

[18F]-MPPF injection - Hippocampus implantation.

Spatial distribution evaluation validated!
Several experiments validated PIXSIC biological and pharmacological suitability.

[18F]-MPPF 2 mCi injection - Hippocampus and cerebellum implantations.

Uptake measurement validated!
Several experiments validated PIXSIC biological and pharmacological suitability.

[11C]-raclopride 2 mCi injection - Striatum and cerebellum implantations.

PIXSIC shows anesthesia bias on neuroimaging results!
PIXSIC: It works!

- First autonomous β^+ probe
- Validated in pharmacological studies
- Biocompatibility validated

... but it shows major limits:

- Mechanical robustness.
- Electronic noise.
- γ rays sensitivity.

CMOS MAPS technology

- Highly pixelated sensors.
- Direct amplification on the pixel.
- Data processing on the sensor.
- Low thickness of the sensitive volume.
MAPSSIC : A novel CMOS intracerebral probe

MAPSSIC project aims to:

- Develop a CMOS MAPS sensor
- Develop front-end electronics
- Create an autonomous system on the animal head and back
- Validate the biological compatibility (temperature, size ...)
- Ensure mechanical and electrical robustness

Use of Monte-Carlo simulations

GATE
Simulations of Preclinical and Clinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy
beaker filled with an homogeneous radioactive solution

MAPSSIC PIXSIC

\[
\begin{array}{c|cc}
\text{Isotope} & \text{MAPSSIC} & \text{PIXSIC} \\
\hline
^{18}\text{F} & 6.9 & 8.1 \\
^{11}\text{C} & 14.1 & 14.1 \\
^{15}\text{O} & 36.5 & \text{n/a} \\
\end{array}
\]

PIXSIC pixel vs MAPSSIC

10 rows sensitivity

\(\times 10^{-2}\) events/s/(Bq/mm\(^3\))

Positron sensitivity is compatible with biological experiments

\(\gamma\) and \(e^-\) sensitivities are very low in typical biological volume sizes
Rat brain phantom

Simple brain model using 6 regions: cerebellum, striatum (left and right), other brain tissues and harderian glands (left and right)

Probe is inserted into left putamen region (LCPu), activity is distributed as in typical 11C-raclopride experiments

<table>
<thead>
<tr>
<th>Region</th>
<th>β^+</th>
<th>e^-</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebelum</td>
<td>0.00</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>L. CPu</td>
<td>86.27</td>
<td>2.80</td>
<td>0.19</td>
</tr>
<tr>
<td>R. CPu</td>
<td>0.00</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>Brain (other)</td>
<td>7.90</td>
<td>1.42</td>
<td>0.23</td>
</tr>
<tr>
<td>L. HG</td>
<td>0.00</td>
<td>0.29</td>
<td>0.10</td>
</tr>
<tr>
<td>R. HG</td>
<td>0.00</td>
<td>0.39</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Relative sensitivity (%)
Energy deposits

Mean deposited energy spectra in a single pixel

<table>
<thead>
<tr>
<th>Isotope</th>
<th>$\beta^+ E_{mean}$ (keV)</th>
<th>$\beta^+ E_{peak}$ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{18}F</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>^{11}C</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>^{15}O</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

Noise level in biological medium should be low enough to allow detection.
Sensitive layer thickness is a trade-off between sensitivity and S/N ratio
Pixels size variation only influences deposited energy
First prototypes

First prototype: IMIC-B
- 18 μm sensitive layer
- Digital sensor
- 1 bit memory per frame
- Low power consumption (16 μW)

Second prototype: IMIC-LF
- HVCMOS
- 25 μm sensitive layer at 10 V
- Digital or analogic sensor
Experimental testing setup

Acquisition of sensor images over time (451 ms/frame)
An incident particles leads to a cluster of activated pixels
We observe events pile-up at high count rates but a good linearity at low count rates.

There is a good accordance between MC simulation and experimental sensitivity measurement in the linear region (3.58×10^2 evts/s/MBq).
Typical positron attenuation profile (fitted by one exponential decay $I(l) = I_0 \times e^{-al}$ with linear coefficient $a = 4.8 \ mm^{-1}$)
Remote annihilation gammas source:

No significant difference with or without remote β^+ source.

Background noise (no source, no visible light):

Low background noise: 9.0×10^{-4} events/s
Conclusion and outlook

Conclusion:
- CMOS MAPS are well suited for positron detection
- Our first sensor prototype is ready to be included in a probe setup

Outlook:
- Full probe design
- Control and acquisition electronics, backpack and connectivity
- Biocompatibility challenges (heat dissipation)
- Performances assessment in more realistic Monte-Carlo simulations and experimental conditions
Thank you for your attention

IMNC, Orsay
L. Ammour,
F. Lefebvre,
F. Pain,
L. Pinot,
P. Laniece,
M.-A. Verdier

IPHG, Strasbourg
J. Heymes,
M. Kachel,
J. Baudot

CPPM, Marseille
M. Bautista,
F. Gensolen,
P. Pangaud,
C. Morel

CRNL, Lyon
S. Fieux,
L. Zimmer

NeuroPSI, Orsay
P. Gisquet-Verrier