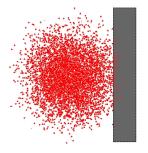
DE LA RECHERCHE À L'INDUSTRIE

Accelerating a Monte Carlo shielding calculation by learning the importance map

Michel Nowak Eric Dumonteil¹, Jamal Atif², Davide Mancusi³


 1 IRSN

²Paris Dauphine LAMSADE

³CEA/DEN/DANS/DM2S/SERMA/LTSD

www.cea.fr

- Estimator of a response $\hat{\phi}_D$ in a detector
- variance on the result σ^2
- Low probability $\simeq 10^{-8}$

$$FOM = \frac{1}{\sigma^2 \cdot T}$$

AMS

Adaptive Multi-level Splitting

- real collisions
- warranty of reaching the detector
- Function $\mathcal{I}(x)$ to rank the particles

AMS

Adaptive Multi-level Splitting

- real collisions
- warranty of reaching the detector
- Function $\mathcal{I}(x)$ to rank the particles

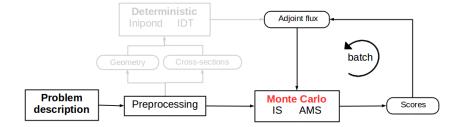
Exponential transform Modified laws of physics

$$\Sigma^{*}(\mathbf{P}) = \Sigma(\mathbf{P}) - \frac{\overrightarrow{\nabla}I(\mathbf{P})}{\left\|\overrightarrow{\nabla}I(\mathbf{P})\right\|} \cdot \Omega(\mathbf{P})$$
$$\overrightarrow{\nabla}I(\mathbf{P}) \cdot \Omega(\mathbf{P}) < 0 \implies \boxed{\Sigma^{*} > \Sigma}$$

$$\overrightarrow{
abla} I(\mathbf{P}) \cdot \Omega(\mathbf{P}) > 0 \implies \boxed{\Sigma^* < \Sigma}$$

Deterministic solver

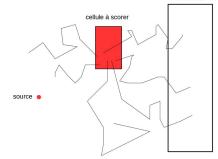
Inipond


- Dijkstra algorithm
- Monitoring of energy groups

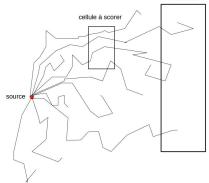
IDT

- 2D/3D SN code
- Geometry from mesh
- Multigroup XS

Michel Nowak

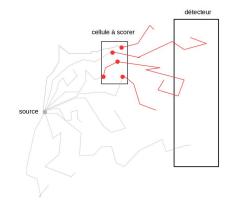


Average contribution of a point in the phase space $(\overrightarrow{r}, \overrightarrow{\Omega}, E)$ to a response (flux in a detector). cellule à scorer


Average contribution of a point in the phase space $(\overrightarrow{r}, \overrightarrow{\Omega}, E)$ to a response (flux in a detector).

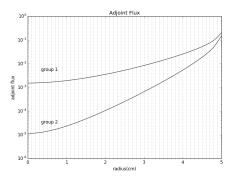
Average contribution of a point in the phase space $(\overrightarrow{r}, \overrightarrow{\Omega}, E)$ to a response (flux in a detector).

693

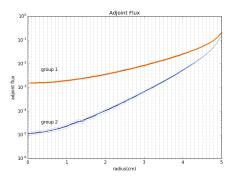

Importance

 c_D is the contribution of a point in the phase space $\mathbf{x} = \left(\overrightarrow{\mathbf{r}}, E, \overrightarrow{\Omega}\right)$

$$\begin{aligned} \overline{\mathcal{I}(x) &= \mathbb{E}(c_D | x) \\ &= \int c_D \frac{p(c_D, x)}{p(x)} \\ &= \frac{1}{p(x)} \int c_D p(c_D, x) \end{aligned}$$

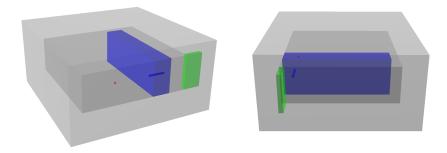

Importance score on a mesh :

$$\hat{\mathcal{I}}(\textit{cell}) = \frac{\mathbb{E}\left(\frac{1}{N}\sum_{x \in \textit{cell}} c_D\right)}{\mathbb{E}\left(\frac{1}{N}\sum_{x \in \textit{cell}} \omega(x)\right)}$$

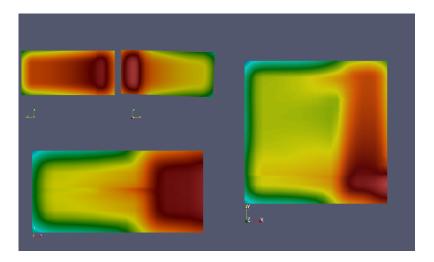

- Homogeneous sphere
- Tripoli AMS multi-group
 2 groups
- detector : $5cm \le r \le 5.2cm$
- score on mesh / volumes
- score COLL

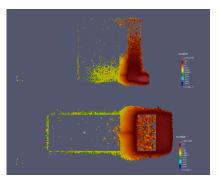
Score the adjoint flux

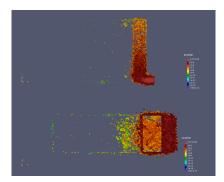
- Homogeneous sphere
- Tripoli AMS multi-group
 2 groups
- detector : $5cm \le r \le 5.2cm$
- score on mesh / volumes
- score COLL



DE LA RECHERCHE À L'INDUSTRIE

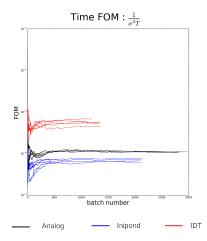



3D Bunker : Idt



3D Bunker : importance

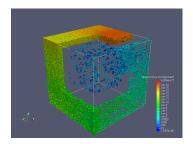
Geometrical map

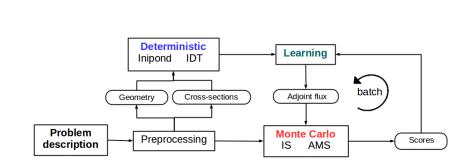


Inipond map

Figure of merit

Michel Nowak




What could be improved

- Holes in the importance score
- Discretisation choices (direction, or energy)
- Difficult convergence of deterministic solvers for streaming problems

Motivations

• Improved FOM with IDT importance map

Learning

Points

N collisions points $coll^{(i)}$ phase space : x, y, z , E, Ω

target : contribution⁽ⁱ⁾

Points

N collisions points $coll^{(i)}$ phase space : x, y, z , E, Ω target : $contribution^{(i)}$

Features

N observations $x^{(i)}$ 6 features target : $y^{(i)}$

Points

N collisions points $coll^{(i)}$ phase space : x, y, z , E, Ω target : $contribution^{(i)}$

Features

N observations $x^{(i)}$ 6 features target : $y^{(i)}$

Model

Model, parameters θ : f_{θ} Observation loss :

$$\mathcal{L}_{ heta}(x^{(i)}, y^{(i)}) = \left[y^{(i)} - f_{ heta}\left(x^{(i)}
ight)
ight]^2$$


Optimisation target :

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{\theta}(x^{(i)}, y^{(i)})$$

DE LA RECHERCHE À L'INDUSTRIE

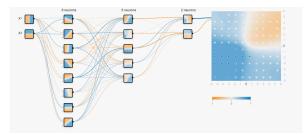
Learning Sphere

Nature of the problem :

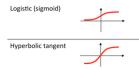
- 1. large dataset : 10k of observations per second
- 2. lots of noise

Requirements :

- 1. online algorithm
- 2. fast training
- 3. fast prediction of the importance at each collision


Candidates :

- 1. Neural Networks
- 2. Decision Trees



Neural Networks

Activation

Gradient descent

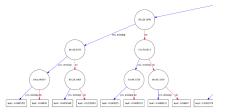
learning rate : η

$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta)$$

Optimisation

- AdaGrad
- AdaDelta
- AdaBoost
- RMSProp

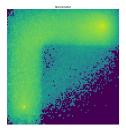
. . .

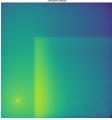

Decision Trees

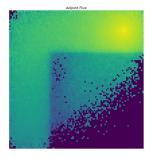
First define a set of **split** candidates

$$\hat{y}_i = \sum_{t=0}^T f_t(x_i)$$

Optimise nodes according to :

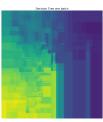

$$J^{(t)} \simeq \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}^{t-1} + f_t(x_i)) + \Omega(f_t)$$

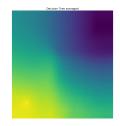




Wafe importance on mesh

Denominato





Wafe prediction

Decision Trees

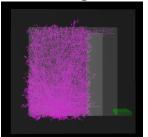
Neural Networks

Conclusions

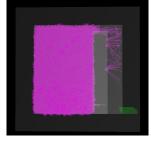
- Importance from IDT
- Importance from Mesh
- Importance from Models (N. Nets, Decision Trees)
- Averaging of non-online models on mesh

Perspectives

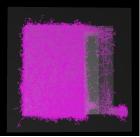
- TRACK estimator
- Hyperoptimization
- Initialisation of model with IDT map


Difficulties

• AMS stops when bad importance is predicted



Bunker tracks


Analog

Inipond

AMS

