

unive

DE LA RECHERCHE À L'INDUSTRIE

Neutrino masses

- Neutrino oscillation discovery proved that neutrinos do have mass
- But their absolute mass scale and hierarchy are still open questions:

request to cover inverted hierarchy)

Observation challenge for 0vββ:

- New physics beyond the Standard model
- Majorana nature of neutrino
- Answer about origin of matter/antimatter asymmetry in the Universe
- Definition of absolute scale of neutrinos mass:

Isotope selection: why ¹⁰⁰Mo?

- There is no "perfect" isotope, but...
- High energy of decay: $Q_{2\beta}$ = 3034 keV > 2615 keV
- Isotopic abundance = 9.7 %
- Possibility of enrichment in a large amount (enrichable by gas centrifugation)
- Favorable theoretical predictions
- High detection efficiency using molybdate crystal
- Very high energy resolution and powerful particle discrimination(cryogenic scintillating bolometers)

Molibdenum-based crystals

- Crystals succesfully tested as scintillating bolometers:
 - CaMoO₄
 - CdMoO₄
 - PbMoO₄
 - $SrMoO_4$
 - \underline{ZnMoO}_4
 - $\underline{\text{Li}_2\text{MoO}_4}$

AMoRE

Drawbacks:

- Necessity of ⁴⁸Ca depletion
- Radiopurity (difficult to purify Ca from U, Th, Ra)

LUMINEU

Initial choice (2012): ZnMoO₄ First tests on large Li₂MoO₄ crystals: spring 2014

Selection of Li₂MoO₄ for a pilot experiment (March 2016)

Pros:

- Better bolometric performance
- Easy crystallization / excellent quality
- Outstanding radiopurity

Cons:

- Hygroscopic material
- ⁴⁰K is natural contaminant
- Lower light yield (~0.8 keV/MeV)

Scintillating bolometers

- The nuclear energy is measured as a temperature increase in a crystal
- Thermometer provides phonon signal
- Typical signal sizes: 0.1 mK / MeV, converted to about 0.1-0.5 mV / MeV
- High energy resolution: 5-7 keV (0.2%)

- High registration efficiency:(70% 90%)
- Flash of light is produced by the absorption of a particle
- Different particles produce different amount of light
- Powerful particle discrimination potential to reject background

CUPID (CUORE Upgrade with Particle IDentification)

- Follow-up to CUORE with background improved by a factor 100
- Reduce/control background from materials and from muon / neutrons
- Improve detector technology to get rid of α/surface background

From LUMINEU to CUPID-Mo

Tests of Li₂MoO₄ First crystals - 2010

 $Li_2^{100}MoO_4$: production of first enriched crystal in 2015

20 enriched crystals: autumn 2017. Prove of 0-background experiment concept

Two suspended towers, 4 enriched Li₂¹⁰⁰MoO₄ crystals winter 2016 – spring 2015 Test of technology and background evaluation for the future demonstrator

Suspended tower in LSM to compare $ZnMoO_4$ and $Li_2^{100}MoO_4$ to choose best (2015-2016)

LSM underground laboratory

- Laboratoire Souterrain de Modane (LSM)⁻
 - Frejus tunnel
 - 1.7 km rock overburden (~4.8 km w.e.)
 - cosmic µ reduction= 10-8(1/m2h)
 - Deradonized air flow (~30 mBq/m3)

• EDELWEISS set-up:

- Clean room
- Copper cryostat
- Low radioactivity lead (min. 20 cm)
- Polyethylene (min. 50 cm)
- Monitoring of μ / n / Ra
- Muon veto

Two suspended towers

Test of technology for demonstrator with 20 crystals and R&D detectors with another compounds for 2β-decay research

Performance of 4 enriched crystals

Neutron calibration: alpha discrimination

γ(β) [2.5-2.7 MeV] / α+t [5.0-5.5 MeV] Discrimination Power = 9.5(5)

Double beta decay of ¹⁰⁰Mo

CUPID-Mo experiment

 Detectors of the 1st batch of 20 crystals will be assembled and operated in LSM coexisting with EDELWEISS low-mass WIMP search.

20-detector demonstrator schedule:

- June-July 2017 underground test of a single 4-detector tower
- November 2017 half 2018 long underground run, first results of background model and sensitivity will come out.

 In calculating the sensitivity (90% C.L.), we will assume: 	Configuration	Half life limit [90% c.1.]	M _{ββ} [meV]
• b = 1×10^{-3} counts/keV/kg/y	20 crystal [20×0.5 cr.×y]	$1.4 imes 10^{24}$	240 - 670
 8 keV energy window 	20 crystal [20×1.5 cr.×y]	$4.2 imes 10^{24}$	140 - 390
 78% efficiency 	40 crystal [40×3 cr.×y]	1.7×10^{25}	70 – 200

Conclusions and perspectives

- Properties of neutrino: mass scale, Dirac or Majorana answer to this question is important for development of new theories
- Cryogenic scintillating bolometers are promising detectors for highsensitivity searches for 0vββ decay
- Detectors, developed in the framework of the LUMINEU project, show excellent performance: a few keV energy resolution, 20 sigma α/β particle discrimination power at the $Q_{2\beta}$ value of ¹⁰⁰Mo
- Li₂¹⁰⁰MoO₄ crystals are perspective material for 0vββ decay research, also can be used as neutron detectors with high energy resolution
- Operation of four Li₂¹⁰⁰MoO₄ scintillating bolometers array was highly successful
- Goal of Cupid-Mo demonstrator: long run with 20 Li₂¹⁰⁰MoO₄ crystals to prove "zero-background" concept for future ton-scale experiment

Thanks for your attention!

In physics, you don't have to go around making trouble for yourself - nature does it for you. Frank Wilczek

Backups

Duilution refrigerators

- Complicated system
- It has to be wholly isolated from the environment: vacuum chamber
- To cool down below the LHe temperature (≈ 4K) the cryostat uses a mixture of two isotopes of helium: 3He and 4He.
- Two ways to pre-cool:
 - Wet: LHe bath which provides the first cooling stage at 4.2 K.
 - Dry: pulse tube cooler using heat-exchange gas

Uncertainty in predictions: Nuclear Matrix Elements

- Complicated nuclear many-body problem
- Cannot be measured independently
- Different methods have been used for the calculation of neutrinoless double-β decay NMEs:

Total Muon Flux (cm⁻²s⁻¹)

CUORE (Cryogenic Underground Observatory for Rare Events)

Operation already started.

CUPID-0/Se experiment: CUORE Upgrade with Particle IDentification

- Search for 0nbb decay of 82Se with Zn82Se scintillating bolometers
- Data taking with 26 enriched detectors is ongoing
- Expected 1 yr sensitivity is T1/2 ~ 1025 yr

Neutrinos properties: a door to new physics

- Nature of neutrino:
 - Dirac (particle and anti-particle are different, like electron and positron)
 - Majorana (particle and anti-particle cannot be distinguished)
- Neutrino oscillations: neutrinos do have masses (in SM they are considered to be massless), but scale is not defined

Pulse-shape parameter

27