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Introduction to GPDs Modeling GPDs Conclusion

Definition of GPDs

• Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

Hq (x , ξ, t) =
1
2

∫
dz−

2π
e i x P+z−

〈
P +

∆

2
∣∣q̄ (−z) γ+q (z)

∣∣P − ∆

2

〉∣∣∣∣
z+=0, z⊥=0

.

(1)
with:

t = ∆2 , ξ = − ∆+

2P+
.

• Similar matrix element for gluons.
• More GPDs for spin- 1

2 hadrons.
• Experimental programs at JLab,

COMPASS.

• Impact parameter space GPD (at ξ = 0): (Burkardt, 2000)

q
(
x , ~b⊥

)
=

∫
d2 ~∆⊥

(2π)2 e−i ~b⊥· ~∆⊥ Hq
(
x , 0,− ~∆⊥

2)
. (2)
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Introduction to GPDs Modeling GPDs Conclusion

Theoretical constraints on GPDs

Main properties:
• Physical region: (x , ξ) ∈ [−1, 1]2.

I DGLAP: |x | > |ξ|.
I ERBL: |x | < |ξ|.

• Link to PDFs and Form Factors:∫
dx Hq (x , ξ, t) = F q (t) , (3)

Hq (x , 0, 0) = θ (x) q (x)− θ (−x) q̄ (−x) . (4)
• Polynomiality: ∫ 1

−1
dx xm H (x , ξ, t) = Polynomial in ξ . (5)

I From Lorentz invariance.

• Positivity (in DGLAP): (Pire et al., 1999; Radyushkin, 1999)

|Hq (x , ξ, t)| ≤

√
q

(
x − ξ
1− ξ

)
q

(
x + ξ

1 + ξ

)
. (6)

I Cauchy-Schwarz theorem in Hilbert space.
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Introduction to GPDs Modeling GPDs Conclusion

Accessing GPDs
• Exclusive processes:

DVCS TCS DVMP

• Observables are convolutions of:

I a hard-scattering kernel, calculated with perturbative QCD (short distance
interactions).

I a soft part, i.e. the GPD, with long distance interactions encoded
(non-perturbative QCD).
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Introduction to GPDs Modeling GPDs Conclusion

Overlap of Light-cone wave functions

• A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

|H;P, λ〉 =
∑
N,β

∫
[dx ]N

[
d2k⊥

]
N

Ψλ
N,β (x1, k⊥1, ...) |N, β; k1, ..., kN〉 , (10)

where the Ψλ
N,β are the Light-cone wave-functions (LCWF).

• For example, for the pion:∣∣π+〉 = ψπud̄
∣∣ud̄〉+ ψπud̄g

∣∣ud̄g〉+ ... (11)

• GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

Hq (x , ξ, t) =
∑
N,β

√
1− ξ

2−N√
1 + ξ

2−N∑
a

δa,q (12)

×
∫

[dx̄]N
[
d2k̄⊥

]
N
δ (x − x̄a) Ψ∗N,β

(
x̂
′
1, k̂
′
⊥1, ...

)
ΨN,β

(
x̃1, k̃⊥1, ...

)
,

in the DGLAP region ξ < x < 1 (pion case).
• Similar result in ERBL (−ξ < x < ξ), but with N and N + 2...
• GPD is a scalar product of LCWFs:

I Cauchy-Schwarz theorem ⇒ Positivity fulfilled!
I Polynomiality not manifest...
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• DD representation of GPDs:
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Ω

dβ dα f (β, α, t) δ (x − β − αξ) . (13)
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From DGLAP GPD to a DD

• In Overlap representation: DGLAP region only (e.g. two-body
LCWFs).

I Need ERBL to complete polynomiality.

Problem
Find f (β, α) on square {|α|+ |β| ≤ 1} such that

H (x , ξ)|DGLAP ∝
∫

dβ dα f (β, α) δ (x − β − αξ) .

• If model fulfills Lorentz invariance: (Moutarde, 2015)

I DD f (β, α) exists (if the GPD behaves well) and is unique.
I We can reconstruct the GPD everywhere.
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Numerical Inversion

R
−→
←−

?

• Quark GPD: H (x , ξ) = 0 for −1 < x < − |ξ| =⇒ f (β, α) = 0 for β < 0.
• Domains β < 0 and β > 0 are uncorrelated in the DGLAP region.
• Divide and conquer:

I Better numerical stability.

I Lesser complexity: O (Np + Np)� O ((N + N)p).

• α-parity of the DD: f (β,−α) = f (β, α) .
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Ill-posed problems and Regularization

• The inversion of a Fredholm equation of the first kind∫
K (x , y) f (y) dy = g (x) (15)

is an ill-posed problem.

I The inverse is not continuous: an arbitrarily small variation ∆g of the rhs can lead
to an arbitrarily large variation ∆f of the solution.

• The discrete problem needs to be regularized.

I E.g Tikhonov regularization: min
{
‖AX − B‖2 + ε ‖X‖2

}
.

Theoretical “L-curve”: curve parameterized
by the regularization factor.

(fig. taken from Ref. (Hansen, 2007))

L-curve with the iteration number as

regularization factor.

Nabil Chouika GPDs and covariant extension Pheniics Fest 30/05/17 12 / 17



Introduction to GPDs Modeling GPDs Conclusion

Ill-posed problems and Regularization

• The inversion of a Fredholm equation of the first kind∫
K (x , y) f (y) dy = g (x) (15)

is an ill-posed problem.
I The inverse is not continuous: an arbitrarily small variation ∆g of the rhs can lead

to an arbitrarily large variation ∆f of the solution.

• The discrete problem needs to be regularized.

I E.g Tikhonov regularization: min
{
‖AX − B‖2 + ε ‖X‖2

}
.

Theoretical “L-curve”: curve parameterized
by the regularization factor.

(fig. taken from Ref. (Hansen, 2007))

L-curve with the iteration number as

regularization factor.

Nabil Chouika GPDs and covariant extension Pheniics Fest 30/05/17 12 / 17



Introduction to GPDs Modeling GPDs Conclusion

Ill-posed problems and Regularization

• The inversion of a Fredholm equation of the first kind∫
K (x , y) f (y) dy = g (x) (15)

is an ill-posed problem.
I The inverse is not continuous: an arbitrarily small variation ∆g of the rhs can lead

to an arbitrarily large variation ∆f of the solution.
• The discrete problem needs to be regularized.

I E.g Tikhonov regularization: min
{
‖AX − B‖2 + ε ‖X‖2

}
.

Theoretical “L-curve”: curve parameterized
by the regularization factor.

(fig. taken from Ref. (Hansen, 2007))

L-curve with the iteration number as

regularization factor.

Nabil Chouika GPDs and covariant extension Pheniics Fest 30/05/17 12 / 17



Introduction to GPDs Modeling GPDs Conclusion

Ill-posed problems and Regularization

• The inversion of a Fredholm equation of the first kind∫
K (x , y) f (y) dy = g (x) (15)

is an ill-posed problem.
I The inverse is not continuous: an arbitrarily small variation ∆g of the rhs can lead

to an arbitrarily large variation ∆f of the solution.
• The discrete problem needs to be regularized.

I E.g Tikhonov regularization: min
{
‖AX − B‖2 + ε ‖X‖2

}
.

Theoretical “L-curve”: curve parameterized
by the regularization factor.

(fig. taken from Ref. (Hansen, 2007))

L-curve with the iteration number as

regularization factor.

Nabil Chouika GPDs and covariant extension Pheniics Fest 30/05/17 12 / 17



Introduction to GPDs Modeling GPDs Conclusion

Ill-posed problems and Regularization

• The inversion of a Fredholm equation of the first kind∫
K (x , y) f (y) dy = g (x) (15)

is an ill-posed problem.
I The inverse is not continuous: an arbitrarily small variation ∆g of the rhs can lead

to an arbitrarily large variation ∆f of the solution.
• The discrete problem needs to be regularized.

I E.g Tikhonov regularization: min
{
‖AX − B‖2 + ε ‖X‖2

}
.

Theoretical “L-curve”: curve parameterized
by the regularization factor.

(fig. taken from Ref. (Hansen, 2007))

L-curve with the iteration number as

regularization factor.

Nabil Chouika GPDs and covariant extension Pheniics Fest 30/05/17 12 / 17



Introduction to GPDs Modeling GPDs Conclusion

Some examples (Dyson-Schwinger model)

Figure: Extension of GPDs for the pion DSE model of Refs. (Mezrag, 2015; Mezrag
et al., 2016). Left: t = 0 GeV2. Right: t = 1 GeV2. Comparison to the analytical result.
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Some examples (Spectator model)

Figure: Extension of GPD E for the nucleon model of Ref. (Hwang and Mueller, 2008).
Comparison to the analytical result of the paper.
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Summary

• Generalized Parton Distributions

I encode information about the 3D structure of a hadron.
I are accessible with exclusive processes in experiments: JLab,

COMPASS, etc.
• Systematic procedure for GPD modeling from first principles:

I LCWFs −→
Overlap

GPD in DGLAP −→
Inverse Radon Transform

DD −→
RT

GPD.

I Both polynomiality and positivity!
I Compromise with respect to noise and

convergence.

• Thank you!

I Any questions?
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