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Introduction to GPDs
0

Definition of GPDs

e Quark GPD (twist-2, spin-0 hadron): (Miiller et al., 1994; Radyushkin, 1996; Ji, 1997)

1 dz™ eix Pz~

A A
. B dz™ a4 _2
e =2 [ <P+ > la(=2)7"a(2)| P 2>z+0ﬂ0
1
with: 1)
A+
— 2 - ——
E=A" E=—opr-
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e Similar matrix element for gluons.
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Definition of GPDs

e Quark GPD (twist-2, spin-0 hadron): (Miiller et al., 1994; Radyushkin, 1996; Ji, 1997)

1 [dz™ xp+a— A 4 A
q _ = X z - _ _ =
Hi(x &) =5 [ S—e <P+ > la(=2)7"a(2)| P 2>

z+t=0,z, =0

(1)

with:
A+

—_ A2 — _
t=07 =

Similar matrix element for gluons.

More GPDs for spin—% hadrons.

® Experimental programs at JLab,
COMPASS.
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Introduction to GPDs
0

Definition of GPDs

e Quark GPD (twist-2, spin-0 hadron): (Miiller et al., 1994; Radyushkin, 1996; Ji, 1997)

1 [dz” jepem A A
Hi(xgt) =5 [ 5" <P+§!q(—z)v*q(2)!’3_§>

2 2m z+t=0,z, =0
1
with: (1)
A+
— A2 —
t=A", &= SpT -
e Similar matrix element for gluons.
® More GPDs for spin—% hadrons.
® Experimental programs at JLab,
COMPASS.
4
® Impact parameter space GPD (at £ = 0): (Burkardt, 2000)
- N -
q (X7 bl) _[d é e TPLAL pa (X,O, —ALZ) . (2)
(27)
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Definition of GPDs

e Quark GPD (twist-2, spin-0 hadron): (Miiller et al., 1994; Radyushkin, 1996; Ji, 1997)

1 [dz™ xp+a— A 4 A
q _ = = X z - _ _ =
Hi(x &) =5 [ S—e <P+ > la(=2)7"a(2)| P 2>

z+t=0,z, =0

(1)

with:
A+

_ A2 _
t=07 =

b, / x
longitudinal

»

Similar matrix element for gluons.

o ® More GPDs for spin- hadrons.
ogoL 0oL ot * e Experimental programs at JLab,
COMPASS.

® Impact parameter space GPD (at £ = 0): (Burkardt, 2000)

q (X7 bl) - C(igé e ibLAL pya (x,o, —A“f) . ()
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Introduction to GPDs
oce

Theoretical constraints on GPDs

Main properties:
e Physical region: (x,¢) € [-1,1]%.
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® Polynomiality: )
/_1 dx x™ H (x,&,t) = Polynomial in £ . (5)

» From Lorentz invariance.

° POSitiVity (II’] DGLAP) (Pire et al., 1999; Radyushkin, 1999)
- +¢
HY (x,€,1)] < Lg) (X ) 6
| (x£>|\/q(15 a (3 ©)
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Theoretical constraints on GPDs

Main properties:
e Physical region: (x,¢) € [-1,1]%.
> DGLAP: |x| > [¢].
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® Link to PDFs and Form Factors:
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HY (x,0,0) = 0 (x) g (x) — 0 (—x) G (~x) - (4)

® Polynomiality: )
/_1 dx x™ H (x,&,t) = Polynomial in £ . (5)

» From Lorentz invariance.

° POSitiVity (II’] DGLAP) (Pire et al., 1999; Radyushkin, 1999)

|Hq(x,£7r>|<\/q (=5)a(3%5). ()

» Cauchy-Schwarz theorem in Hilbert space.
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£ ? v v po, @, O, ...

o
pa\ N P
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Introduction to GPDs
°

Accessing GPDs

® Exclusive processes:

B A

DVCS TCS DVMP

e Compton Form Factors: (Belitsky et al., 2002)

1
F(§7t7Q2): dx C X,E,O’,S(/JF),Q F(X7£1t7p“f:)' (8)
1 HE

e Observables are convolutions of:

> a hard-scattering kernel, calculated with perturbative QCD (short distance
interactions).
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Introduction to GPDs
°

Accessing GPDs

® Exclusive processes:

! £ v v to! ¢ PO, @, T, ...
A
OWONNC
P P P P P P

DVCS TCS DVMP

e Compton Form Factors: (Belitsky et al., 2002)

1
Fe,6,Q?) = [ dxC(x6asur), L) F o tour). ©)
1 HE

e Observables are convolutions of:
> a hard-scattering kernel, calculated with perturbative QCD (short distance
interactions).
> a soft part, i.e. the GPD, with long distance interactions encoded
(non-perturbative QCD).
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Modeling GPDs
°

Overlap of Light-cone wave functions

® A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

|H; P, \) :Z/[dx],v [d%k.], Wis O, kin, o) [N, Bs ke, ooy k) (10)
N,B

where the Wy, 4 are the Light-cone wave-functions (LCWF).
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IH; P, \) :Z/[dx],v [0k ], Wi s (et kit ) [N, Bkt oo k) s (10)
N,B

where the Wy, 4 are the Light-cone wave-functions (LCWF).
® For example, for the pion:

|7ty = wl; |ud) + ¥z, |udg) + ... (11)
® GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)

HI(6t) = S VI—€ "Vite 'S ug (12)
N, a

~1

x /[di],v [ 1] (= %) W g (51K ) Wi (ke )

in the DGLAP region £ < x < 1 (pion case).
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® A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

|H; P, )\) :Z/[dx],v [d%k.], Wis O, kin, o) [N, Bs ke, ooy k) (10)
N,B

where the Wy, 4 are the Light-cone wave-functions (LCWF).
® For example, for the pion:

|7ty = 0 |ud) + ¢75, ludg) + ... (11)

® GPD as an overlap of LCWFs: (Diehl et al., 2001; Diehl, 2003)
2-N 2-N
HI(x,6t) = > V1-¢ "V1i+& ") dag (12)
N, a

x /[di],v [ 1] (= %) W g (51K ) Wi (ke )
in the DGLAP region £ < x < 1 (pion case).
e Similar result in ERBL (—¢ < x < &), but with N and N +2...
e GPD is a scalar product of LCWFs:
» Cauchy-Schwarz theorem = Positivity fulfilled!
> Polynomiality not manifest...
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Modeling GPDs
.

Double Distributions (DDs)

® DD representation of GPDs:

H(X,ﬁ,t)oc/ndﬁdaf(ﬁ,a,t)5(x7ﬁfa§). (13)
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® DD representation of GPDs:
H6,t) o [ dBdaf(.0,0) 5(c— 6 af) (13)
Q

e DD f is defined on the support Q = {|8] + |a| < 1}.
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® DD representation of GPDs:
H6,t) o [ dBdaf(.0,0) 5(c— 6 af) (13)
Q

e DD f is defined on the support Q = {|8] + |a| < 1}.
e Polynomial in &:
1
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Modeling GPDs
.

Double Distributions (DDs)

® DD representation of GPDs:

H6,t) o [ dBdaf(.0,0) 5(c— 6 af) (13)
Q
e Radon Transform: (Radon, 1986; Deans, 1983; Teryaev, 2001)
« 3
1 1
R
B z

1 1 — 1 1

-1 -1
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~‘Qll 13

1 1

R & a
NI 3 < v

1 1 — 1 Q Q 1
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Double Distributions (DDs)

® DD representation of GPDs:

H6,t) o [ dBdaf(.0,0) 5(c— 6 af) (13)
Q
e Radon Transform: (Deans, 1983; Teryaev, 2001)
L 3
1 1
g ERBL
R o o
€Z x 3 < <| T
1 1 — 1 Q Q 1
ERBL
-1 ‘ -1
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Modeling GPDs
®00

From DGLAP GPD to a DD

e In Overlap representation: DGLAP region only (e.g. two-body
LCWFs).
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From DGLAP GPD to a DD

e In Overlap representation: DGLAP region only (e.g. two-body
LCWFs).

» Need ERBL to complete polynomiality.

Find 7 (8, a) on square {|a| + |3] < 1} such that

H(x,Olpcrap [ d8daf (8,a)5(x~ 5~ ac).
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Modeling GPDs
®00

From DGLAP GPD to a DD

e In Overlap representation: DGLAP region only (e.g. two-body
LCWFs).

» Need ERBL to complete polynomiality.

Find 7 (8, a) on square {|a| + |3] < 1} such that

H(x,Olpcrap [ d8daf (8,a)5(x~ 5~ ac).

e |f model fulfills Lorentz invariance: (Moutarde, 2015)

» DD f (8, «) exists (if the GPD behaves well) and is unique.
» We can reconstruct the GPD everywhere.
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Modeling GPDs
oeo

Numerical Inversion

@ §
1 1
8 R ERBL
y N N
x z F; 3 v
-1 1 — -1 [} 1
(a)
9
: ERBL
-1 -1
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Modeling GPDs
oeo

Numerical Inversion

3
1¢ 1
8 R ERBL
y N N
z T 8 <
1 1 — -1 =
?
: ERBL
-1 -1

® Quark GPD: H(x,§) =0for -1 < x < —|¢{] = f(B,a) =0 for 8 < 0.
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a 3
1° 1
& R ERBL
H I~
€T €T ,g < X
1IN 1 « 1 0 1
a
’ ?
! ERBL
1 1
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Modeling GPDs
oeo

Numerical Inversion

a 3
1° 1
& R ERBL
H I~
€T €T ,g < X
SR 1 « 1 o 1
?
! ERBL
1 1

® Quark GPD: H(x,§) =0for -1 < x < —|¢{] = f(B,a) =0 for 8 < 0.
® Domains 5 < 0 and 8 > 0 are uncorrelated in the DGLAP region.
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Modeling GPDs
oeo

Numerical Inversion

@ §
1% 1
) R ERBL
H o
Z i 8 < 4,,.
-1 1 « -1 5 1
?
: ERBL
-1 \ -1
® Quark GPD: H(x,§) =0for -1 < x < —|¢{] = f(B,a) =0 for 8 < 0.
® Domains 5 < 0 and 8 > 0 are uncorrelated in the DGLAP region.
e Divide and conquer:
> Better numerical stability.
> Lesser complexity: O (NP + NP) < O ((N + N)P).
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Modeling GPDs
oeo

Numerical Inversion

o ¢
1 1
R ERBL
H o
8 <
-1 1 — -1 2 1
?
: ERBL
-1 -1

® Quark GPD: H(x,§) =0for -1 < x < —|¢{] = f(B,a) =0 for 8 < 0.
® Domains 5 < 0 and 8 > 0 are uncorrelated in the DGLAP region.
e Divide and conquer:
> Better numerical stability.
> Lesser complexity: O (NP + NP) < O ((N + N)P).
® q-parity of the DD: f (3,—a) =f (5, a) .
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Modeling GPDs
ooe

lll-posed problems and Regularization

® The inversion of a Fredholm equation of the first kind

/ K (x,y) F(y)dy = g (x) (15)

is an ill-posed problem.
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Modeling GPDs
ooe
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Modeling GPDs
°0

Some examples (Dyson-Schwinger model)

— ¢=0.0num
-~ &=0.0theo

¢=0.2num
-~ ¢=0.2theo
2 £=0.4num
£-0.4 theo

Hiz, &)

H(z,&)

Figure: Extension of GPDs for the pion DSE model of Refs. (Mezrag, 2015; Mezrag
et al., 2016). Left: t = 0 GeV2. Right: t = 1 GeV?. Comparison to the analytical result.
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Modeling GPDs
oce

Some examples (Spectator model)

— £=0.0num £=0.6 num
30 --- £=0.0theo £=0.6theo
— £=02num  — £=0.8num
--- £=0.2theo --- £=0.8theo

® £=0.4num  — £=1.0num
£=0.4theo --- £=10theo

-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

X

Figure: Extension of GPD E for the nucleon model of Ref. (Hwang and Mueller, 2008).
Comparison to the analytical result of the paper.
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» Any questions?
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