

News from FEV_COB

Roman Pöschl

... on behalf of

Microelectronics

SUNG

UNIVERSITY

WAN

Funding through:

ndre le monde

TYL/FKPPL Annual Meeting IPHC/Strasbourg – May 2017

• SiW ECAL is baseline for future LC detectors

Optimized for Particle Flow Algorithm

Jet energy resolution 3-4%, Excellent photon-hadron separation Remark: New kid on the block – Timing

The SiW ECAL in the ILD Detector

Basic Requirements:

- Extreme high granularity
- Compact and hermetic (inside magnetic coil)

Basic Choices:

- Tungsten as absorber material X₀=3.5mm, R_M=9mm, ⊕=96mm Narrow showers Assures compact design

- Silicon as active material

Support compact design Allows for pixelisation Robust technology Excellent signal/noise ratio: ~10

Physics Prototype

Proof of principle

2003 - 2011

Technological Prototype

Engineering challenges

LC detector

Number of channels : 9720 Weight : ~ 200 Kg Number of channels : up to 45360 Weight : ~ 700 Kg ECAL : Channels : ~100 10⁶ Total Weight : ~130 t

All well integrated in international collaborations as CALICE, AIDA-2020 and the Linear Collider detector concept

CALICE/LC R&D spawned off to LHC detectors (CMS, ATLAS and since recently also LHCb)

More details see talk by Vincent Boudry on Thursday morning

Roman Pöschl

SiW ECAL – Long layer

Successful realisation of a long layer is maybe one of the most challenging R&D projects in worldwide detector R&D

Roman Pöschl

TYL/FKPPL Annual Meeting May 2017

Two options:

BGA packaged chips

BGA version is safe incremental step: test of chips before soldering ; Space for external decoupling capacitors Symmetric stacking will improve flatness, good for wafer gluing Optimal shielding of signal traces Solution for technological prototype

PCB with naked die (Chip-On-Board)

Thin board (~1.2mm)maximal channel density

Tests since 2015
Intensive test programme
e.g. Noise and cross talk

- New production for 2017

 ITAEC-ILC Group at LAL Collaborative Research PROGRAMME -internship to train for operating readout-electronic prototypes(6/3/2017~30/3/2017)

- ✓ ITAEC(IT Accelerator Engineering Center) at SKKU
- ✓ Pf.Chai
- ✓ Leader of ITAEC

Huisu Kim PhD in EEE at SKKU

Working with Roman, Adrian, Stephane and Remi

Bokyeom Kim Master in EEE at SKKU

+ Master student EEE Woojung Jun

FEV8_COB

- Produced by EOS Company South-Korea under supervision of SKKU/OMEGA/LAL 10 board production autumn 2014, Four boards sent to LAL
- 3 Boards wire bonded at CERN in March 2015 and February 2016
- First debugging series at LAL in Summer/Autumn 2015

Support by:

LPNHE

Results from test campaign – Spring 2016 I

SCurve

0

Entries

Mean x

SCurve

SCurve

0

0

Entries

Mean x

S-Curves ASIC0: w/o charge injection S-Curve obtained

by a sucessive

lowering of

In general rather smooth behaviour even w/o charge injection some disabled channels though

Studies by A. Chamseddine NPAC Internship 2016

SCurve

*

Roman Pöschl

Results from test campaign – Spring 2016 II

ASIC 1, 2 S-Curves ASIC3: with charge injection ~2 MIP 215 205 210 210 210 200 210

- Tests carried out in 2015 and 2016 revealed no show stopper
- FEV8 design is however outdated, need to get in phase with current development
- FEV8_COB -> FEV11_COB

FEV11 Design Phase

- Design by Stephane Callier and Pascal Rusquart (LAL)
- Iterations during Summer 2016
- Broadly speaking FEV_COB Is a compilation of two boards Top-Top2 C2 - C10 (Glued together)
- Sent to EOS in December 2016

Meeting(s) with EOS – May 2016 and January 2017

- Organised through SKKU (Thanks to Prof. Chai, Woojung, Mitra ...)
- Intensive discussion to understand our requirements
 - Thin board, flat board ...
- May 2016 Feedback on experience with FEV8_COB and first discussion on FEV11_COB
- January 2017 Launch of FEV11 production

L1 L2	0.1T H/H
	 0.045 P.P(N.F)
	 0.06 P.P(N.F)
L3 L4	0.076T H/H
L5 L6 L7 L8 L9 L10	 0.06 P.P(N.F)
	0.076T H/1
	 0.06 P.P(N.F)
	0.076 1/H
	 0.06 P.P
	0.076 H/H
	 0.06 P.P
L11	 1/2 OZ COPPER

- Excellent communication with EOS company
- E.g. Proposal by EOS on wire drilling May prevent to have two glued boards Two glued boards was issue of discussion with French/European providers back in ~2011
- => Optimised mechanical features!?
- Board is under production now
- Expect delivery of FEV11_COB during Spring/Summer 2017

- In total 1.11mm thickness
- We "allowed" them to go thicker (up to 1.5mm) if this in beneficial for the mechanical features

FEV_COB Gluing – Some remarks

- Adequacy for gluing will have impact on design
- In general flat surface should be beneficial for application of robot Devil is in the details
- e.g Probe point may need to be replaced to assure aspiration
- Submission of new FEV11_COB scheme happened taking into account observations gluing experts (N.B.: and assembly experts of course)

Two meetings on gluing aspects of FEV_COB at LPNHE during autumn

FEV_COB Testbench at LAL

- Update of test bench
 - LDA -> GDCC
 - Calicoes/Pyrame v.before the war -> Recent version
 - Firmware update
- Update realised by Team of LAL, LLR, OMEGA ... THANKS
- Used for training of two students from SKKU Bokyeom Kim and Husui Kim
- Testbench will be shipped to SKKU in the coming two weeks (some delay due to other business, sorry)

Training at LAL

Data acquisition chain as described by students.

- Training implied switch to updated DAQ hardware Devil is in the details, nice trigger curves towards the end of training
- Problems have the "advantage" that one goes into the details of a system

- Tests with FEV8_COB revealed no show-stoppers
 - Option to equip FEV8_COB with baby wafers but I rather prefer to phase it out
- Production of new PCBs on going
 - Move from FEV8 -> FEV11 scheme
 - Expect delivery towards end of Spring/beginning of Summer 2017
- Meetings with EOS company in May 2016 and January 2017
 - Emphasis on mechanical properties
 - Revision of metallisation of bonding pads (Check General Metal Finishing)
- All Korean solution requires finding a bonding company
- Migration to new DAQ Hardware
 - Material for test benches LAL and SKKU,
 - SKKU students were trained at LAL
 - Shipment of testbench to SKKU imminent
- FEV11_COB and DAQ update will allow for smooth integration of COB in regular beam test stacks
 - Including tests at SKKU 6 MeV electron linac or MeV ITAEC proton cyclotron

Backup

Intensive debugging during September 2015

Visit of two students from SKKU and one from Kyushu, possible thanks to FKPPL

Team from SKKU (Korea), OMEGA, LAL and Kyushu

Particular thanks to Hiroto for helping to get the SKKU team going!!!!

Roman Pöschl

TYL/FKPPL Annual Meeting May 2017

Chip0 after disabling of 7 channels: No charge injection

- S-Curves for Chip0 look reasonable up to excellent
- 192 DAC Counts is Common threshold for this ASIC (~1 – 1.5 MIPs)
- Remark: Tests with a better shielded Setup

-> 5-10 DAC counts smaller threshold

Roman Pöschl

TYL/FKPPL Annual Meeting May 2017

- P2IO Project HIGHTEC (France)

- 25kEUR for thin PCBs and DAQ Setup
- AIDA2020
 - Some money for new DAQ development (new hardware available ~mid-2017)
- PHC Star for travel
 - 16 kEUR (France), 30kEUR (Korea)
- FKPPL for travel
 - Funding to be decided at this FKPPL Meeting

Results from test campaign – April 2016 IV

S-Curves ASIC3: with charge injectio ~2 MIP

CO

Results from test campaign – April 2016 V

S-Curves ASIC3: with charge injection ~5 MIP

List of excluded cells

	Channels	Test
ASIC 0	11, 17, 30, 52, 63	High Threshold Trigger
	44, 51, 55, 57	S-curves without Signal Injection*
	47	10 MIP Signal Injection
ASIC 1	30, 38	High Threshold Trigger
	22, 27	S-curves without Signal Injection*
	48	10 MIP Signal Injection
ASIC 2	30, 38	High Threshold Trigger
	21, 27	S-curves without Signal Injection*
	48	10 MIP Signal Injection
ASIC 3	0, 4, 45, 56	High Threshold Trigger
	2, 7, 11, 13, 20, 63	S-curves without Signal Injection*
	47	10 MIP Signal Injection
ASIC 4	7, 18	High Threshold Trigger
	9, 13, 17, 28, 30, 36, 61	S-curves without Signal Injection*
	48, 50	10 MIP Signal Injection
ASIC 5	26, 30	High Threshold Trigger
	53	S-curves without Signal Injection*
	47	10 MIP Signal Injection
ASIC 6	26, 30	High Threshold Trigger
	7, 8, 9, 10, 13, 14, 35	S-curves without Signal Injection*
	47	10 MIP Signal Injection
ASIC 7	46,52	High Threshold Trigger
	20, 24, 33, 37, 38, 42, 44, 48	S-curves without Signal Injection*
	51**	10 MIP Signal Injection