

Workshop on France-Japan and France-Korea Particle Physics Laboratories

<u>Continuation of the D_RD_15 project:</u> Innovative design concepts in P-bulk Planar Pixel Sensor R&D project Koji Nakamura (KEK)

Yoichi Ikegami, Koji Nakamura, Yoshinobu Unno (KEK) <u>Kazuhiko. Hara</u>, Hideki Okawa (Tsukuba) Evangelos Gkoukgoussis, <u>Abdenour Lounis</u>, Clara Nelist, Pierr Petroff Dmytro Hohov, Tasneem Rashid, Reisaburo Tanaka (LAL)

10th May, 2017

Introduction

<u>Collaboration</u>

- Planar type Silicon Pixel detector R&D for ATLAS detector upgrade in France-Japan collaboration
- <u>Goals</u>
 - Performance : evaluate & improve sensor design for radiation tolerance up to 3x10¹⁵n_{eq}/cm² fluence.
 - Productions : work on common sensor productions

Framework : ATLAS Upgrade for HL-LHC

High Luminosity LHC (HL-LHC)

- Start around 2026- with new crab cavity in the interaction region.
- Target : \sqrt{s} =14TeV L=5x10³⁴cm⁻²s⁻¹ $\int Ldt$ =3000-4000fb⁻¹
- Physics program focus on the precise measurements of the Higgs couplings (e.g. Y_{τ} , Y_{b} and λ_{HHH}) and BSM searches.

• Tracking detector is key element

- To keep B/ τ -tagging performance up to μ =200 pileup in an event.
- Need to launch innovative solution for detectors, mechanics, efficient triggering and advanced analysis technics.

The ATLAS upgrade plans full replacement of Inner Tracker

- All silicon tracker (Pixel & Microstrip)
- <u>Requirements for Pixel detector</u>
 - Pixel Size : 50um x 50um (or 25um x 100um)
 - Radiation @ outer layer : 3x10¹⁵n_{eq}/cm²
 - Thickness : 100 or 150um
 - Low noise (<100e) \rightarrow 600e stable threshold
 - High Readout Rate : 5.2Gbps (or 4x1.28Gbps)

ATLAS inner tracker(ITK) project for HL-LHC

- Larger coverage area
 - Pixel : current 2.7m² → upgrade 8.2m²
 - Strip : current 62m² → upgrade 193m²
- Higher Forward coverage
 - Current $\eta < 2.5 \rightarrow$ upgrade $\eta < 4.0$
 - Better Pileup removal
- Mechanics : inclined
 - Reduce material
 - Higher tracking resolution.

10th May, 2017

Facility and expertise

Testbeam campaign

- **Extremely important to test device performance**
 - DAQ and operation
 - In-pixel and/or Edge efficiency
- Testbeam facility
 - CERN SPS : 120GeV π + beam
 - DESY : 4-5GeV e+ beam
 - SLAC : 5-13GeV e- beam
 - FNAL : 120GeV proton beam
- Telescope planes (Track pointing to device)
 - EUDET based on MIMOSA26 monolithic CMOS detector placed in beamline at CERN/DESY/SLAC (~3um pointing resolution).
 - Huge experience of the testbeam operation as having testbeam 3-4 times a year
- *Example* : November testbeam @CERN
 - LAL&KEK devices are in the same runs together with UK, Norway's samples.
 - Excellent data taking was achieved.

KFK

KEK-flex

LAL New ASIC

UK

SINTEF

tel3 tel4 tel5

10th May, 2017

Secondary Ion Mass Spectrometry and Simulation

- SIMS measurement
 - Analytical technique to characterize the impurities near surface(<30um) by ionized secondary particles.
 - Good detection sensitivity for B, P, Al, As, Ni, O, Si etc down to 10¹³ atoms/cm³ with 1-5nm depth resolution.
- Synopsys TCAD simulation
 - Process simulation:
 - Simulate implantation and resulting concentrations.
 - Can compare to SIMS result.
 - Device Simulation :
 - Simulate Electric field to understand the performance of silicon device.
 - Possible to perform simulation for charge correction of MIP signal.

SIMS system at Versailles

10th May, 2017

10th May, 2017

CYRIC : Irradiation Facility in Japan

- CYRIC@Tohoku Univ.
 - An irradiation facility with 70MeV proton beam (~1µA beam current).
 - 3-5 hours for 3x10¹⁵n_{eq}/cm² irradiation with (600nA beam)
 - This allows 2-3 pixel modules with Al plate at the same time(3% E loss/module).
 - Operated at -15°C temprature with dry N₂ gas.
 - Scanning over full pixel range during irradiation.
- LAL's Active Edge Pixel Modules
 - Irradiated LAL's module twice in 2016 and 2017.
 - First irradiation, observed disconnection <u>Mar 20017 @ DESY</u> of bumps after irradiation.
 - Second irradiation, it was successfully done and measured the device at DESY testbeam in March 2017.

<u>Feb 2017</u> LAL's Pixel Mod. (Active Edge)

Sensor technology improvement

10th May, 2017

Active Edge

- Active edge designs for planar pixels.
 - To decrease the Edge inefficiency, active edge process has been developed over 4 years with VTT.
 - To achieve a fully efficient and slim edge sensor, edge implantation (Boron) is performed.
 - 100-200um thick sensor with this active edges makes it a veryattractive candidates for the inner layer(s).

Phosphorus doping

50 µm

GR

Support wafer

p-substrate

- Guard ring types are optimized.

Silicon oxide Boron doping

n⁺

Sensor

50 µm

GR

Edge implantation

11

Biasing structure optimization

- Biasing Structure
 - To apply bias voltage before bumpbonding biasing structure (bias rail and resistor/punch through) to each pixel is necessary to make it GND.
 - On the other hand we observed Efficiency drop under the structure due to field effect.
- Charge sharing
 - On the corner of pixel MIP charge sprit to 4 pixels resulting lower efficiency.
- Biasing structure optimization and lower noise readout chip (TSMC 65nm) are tested.
 - Better Efficiency with optimized bias rail path.
 - Trying to figure out low threshold data with new chips.

10th May, 2017

FJPPL 2017

Testbeam result in Aug. 2016 @ CERN

Module Assembly

- Bump Bonding Technology has been developed.
 - Optimized under bump metallization (UBM)
 - Optimization of parameters for flip-chip.
 - Yield of bump bonding is almost 100% for last 2 years(>60 ASICs).
 - Stability against thermal cycling (-40,40°C) performed w/o bump disconnection.
- Towards Integration, Flex readout circuits have been developed.
 - Quad(4 ASICs) and double(2 ASICs) module flex have been designed and produced in Japan.
 - Alignment tools for gluing and wire bonding are in development.

Exchange Experience

<u>Visit LAL in 2016</u>

Kazuyuki Sato, Junki Suzuki, Hitomi Tokutake, Hiromi Sawai and K.N. Original aim is to perform SIMS measurement @ Versailles but it was temporary broken unfortunately. Visiting probe-station, SMD lab etc.

<u> Visit KEK in 2015</u>

Clara Nelist After irradiation of LAL's module in Japan, testing for the device as well as visiting Jpark @ Tokai

Good opportunity to share expertise and effort.

10th May, 2017

Another layer of Collaboration? : LGAD

Low Gain Avalanche Detectors

- To solve pileup issue in future high luminosity hadron collider, good time resolution detector is important.
- The ~50ps time resolution makes it possible to identify each collision in an event.

- Smaller time walk (higher field)
- Smaller time jitter (low noise)
- p+ layer beneath n+ implant creates
 ~300kV/cm electric field (Gain ~ 10)

CNM/FBK/HPK produced devices

- LAL group : Simulation&Testing CNM device
- Tsukuba group : Testing HPK device

10th May, 2017

Sharing of the work

Conclusion

 French and Japanese Groups are committed in an ambitious R&D program inside the ATLAS ITK effort for HL-LHC, where we will face challenging issues:

Major issue is to Built an innovative granular thin pixel planar detector.

- Find the best sensor layout ingredients for high charge collection efficiency.
- Explore productions with active edge and optimized biasing structure which will exhibit the best performance.
- Develop robust radiation hard solutions to cope with HL-LHC irradiation fluences.
- Thus our aim is to enhance and reinforce LAL-FR/Japan collaboration to built the future P bulk Planar Pixel Sensors for ATLAS tracker for HL-LHC. We intend to increase the :
 - Synergy in terms of P bulk sensor design, characterization and testing (Clean room, Test-Beam, irradiation facility)
 - Understand the behavior of heavily irradiated Planar Pixel Sensors
 - Share expertise and efforts (TCAD simulation, SIMS, Irradiation etc...).
- Now in application of Japanese funding program for "Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers." LAL is also partner other such Japanese research program.

Budget request 2017

Funding Request from France					Funding Request from Japan					
Description	€/unit	:	Nb of units	Total (€)	Requested to	Description	k¥/unit	Nb of units	Total (k¥)	Requested to
Visit to KEK/Tsukuba	150/	day	5 day	1500	FJPPL	Student Stay at LAL	100 / week	4 weeks	400	FJPPL/LAL
Student Stay in	1000/	month	2	500	KEK/Tsukuba	Travel+per-diem (Japan-CERN)	400	1	400	FJPPL
KEK/ Isukuba Travels	900		weeks	1800	FJPPL	Travel+per-diem (CERN-LAL)	50	4	200	FJPPL
Total				5850		Total			1000	
		Additional Funding from France			Additional Funding from Japan					
		Ducuid calles				Duce vial and law /	Tura			

Provided by / requested to	Туре	€	Provided by / requested to	Туре	k¥
LAL / ATLAS PIXEL	TCAD SIM license	400	Tsukuba / ATLAS PIXEL	Travel to CERN	2100
LAL / ATLAS PIXEL	Silicon wafer production	4000	Tsukuba / ATLAS PIXEL	Various expenditure	600
LAL / ATLAS PIXEL	Readout card	1500			
Total		5900	Total		2700

10th May, 2017

Members

FJPPL (TYL) application 2016-2017

Fiscal year April 1st 2016–March 31st 2017

Please replace the red examples by the appropriate data in black

ID ¹ :	Title: Innovative design concepts in P Bulk Planar Pixel Sensors							
	Fren		Japanese Group					
	Name	Title	Lab./Organis. ²	Name	Title	Lab/Organis. ³		
Leader	Leader : A. Lounis	Dr.	LAL/IN2P3	Leader : K. Hara	Dr.	U. Tsukuba		
	P. Petroff	Dr.	LAL/IN2P3	K. Nakamura	Dr.	KEK		
Members	R.Tanaka	Dr.	LAL/IN2P3	Y. Unno	Dr.	KEK		
	D. Varouchas	Dr	LAL/IN2P3	Y. Ikegami	Dr.	U. Tsukuba/KEK		
	D. Hohov	PhD	LAL/IN2P3	H. Okawa	Dr.	U. Tsukuba		

Budget request in 2017

Funding Request from France									
Description	€/unit	Nb of units	Total (€)	Requested to ⁴ :					
Visit to KeK/Tsukuba (2 seniors)	150/day	5 days	1500	FJPPL					
Student Stay in KeK/Tsukuba	1000/month	2 weeks	500	KEK /TSUKUBA					
Travels	900	2	1800	FJPPL					
Total			5850						
Funding Request from KEK									
Description	k¥/Unit	Nb of units	Total (k¥)	Requested to:					
Student Stay at LAL	100/week	4 weeks	400	FJPPL/LAL					
Travel+ per-diem (Japan-CERN)	400	1	400	FJPPL					
Travel+ per-diem (CERN-LAL)	50	4	200	FJPPL					
Total			1000						

Additional Fu	nding from Fran	ce	Additional Funding from Japan			
Provided by/Requested to ⁵	Туре	€	Provided by/Requested to ⁶	Туре	k¥	
LAL/ATLAS PIXEL	TCAD SIM licence	400	Tsukuba/ATLAS PIXEL	Travel to CERN	2100	
LAL/ATLAS PIXEL	Silicon wafer production	4000	Tsukuba/ATLAS PIXEL	Various expenditure	600	
LAL ATLAS PIXEL	Readout card	1500				
Total		5900	Total		2700	

10th May, 2017