

iRPC upgrade project

for CMS during HL-LHC program

Wheel 1

- 1) CMS muon spectrometer
- 2) iRPC project
- 3) Team, activities, timing

M. Gouzevitch (IPNL, France) and T.J Kim (Hanyang University, Korea)

FJPPL/FKPPL workshop in Strasbourg, May 2017

1.2 33.5

1.4 27.7° 1.5 25.2°

1.8 18.81

1.1) Actual CMS Muon spectrometer

Existing systems

- M of CMS.
- Guarantee the SM "bosonic" part of CMS measurement and search program.
- Provides redundancy of 2 muon systems up to η= 1.6.
- Combines:
 - good space resolution (DT in Barrel, CSC in end caps) +
 - fast response (12.5 ns) RPC (L1 trigger).

1.2) Most famous results

 $H(125) \rightarrow 4 \mu / 2e2\mu$.

1.3) HL-LHC program

Figure 1.9: Projected LHC performance through 2035, showing preliminary dates for long shutdowns of LHC and projected luminosities.

	LHC design	HL-LHC design	HL-LHC ultimate
peak luminosity /1034/m²/s	1.0	5.0	7.5
integrated luminosity /1/fb	300	3000	4000
average pileup	50	140	200

- We have collected ~ 1% of the expected luminosity.
- By the upgrade time (LS3) we would collect 10% of the expected luminosity.
- The main challenge for Run 4/5 Muon system would be the background rate.

CMS TP: https://cds.cern.ch/record/2020886?ln=fr

1.4) Upgrades CMS Muon spectrometer

1.5) HSCP

- Heavy Stable Charged Particle predicted by a bunch of BSM theories.
- It is looked at through (see for example arXiv:1305.0491; arXiv:1411.6795):

dE/dX; off time energy deposit in Calorimeter; TOF (Muon system).

TOF proposal with RPC:

L1 trigger with timing for RPC with electronic upgrade: 4 layers with 1 ns resolution. Apply the same to iRPC with resolution 0.1-1 ns.

2.1) History of the iRPC project

- 2013 2014 : first considerations and simulations.
- June 2015 : Technical Proposal.
- 2014-2015: preliminary tests in Korea, Italy, France, China, CERN.
- 2015 now: installation and tests of prototypes in Gamma Irradiation Facility ++ (GIF++). This is a unique facility designed to emulate HL-LHC environment with infrastructure for gaseous detectors.
- October 2017: Technical Design Report
 - Single (+ spare) option on the large size chambers design.
 - Single option on the electronics design.

2.2) RPC design

- The existing RPC chambers was validated up tp 300 Hz / cm2.
- The existing electronics uses only a resolution of 12.5 ns, while the potential is better than 1 ns.
- \blacksquare The existing design uses strips \sim 1 cm wide and \sim 70 cm long that limits the spatial resolution.

2.3) How to increase the rate capability

GLASS electrode

Reduce produced charge / improve speed of charge evacuation.

- Reduce electrode resistivity:
 - Change properties of Bakelite electrodes (Italy / Korea).
 - Use low resistivity glass (China / France)
- Reduce electrode thickness (2 mm now) :
 - Glass: <= 1 mm
 - Bakelite: 1.2 1.6 mm
- Reduce gap thickness (2 mm now) :
 - Glass: 1.2 mm
 - Bakelite: 1.2-1.6 mm
- Improve electronics sensitivity (170 fC now) :
 - Use more sensitivity electronics based on ASICS technology (Omega collaboration - France)
- Gas:
 - Doped glass electrodes requires large fraction of electronegative gas (2-5%) different from default CMS composition. Expensive.

2.4) The actual situation

Good baseline candidate

- Italy / Korea: Bakelite electrodes with 1.4 / 1.4 mm (electrode / gap thickness).
- France / China: high rate / low threshold electronics on ASIC technology + TDC with strips read from both sides: $\sigma_{t} = 1$ ns and $\sigma_{d} = 0.5 3$ cm.

Alternative high timing solution (more expensive)

- China: Thin glass electrodes with 5 gaps (250 microns).
 R&D ongoing to fit CMS gas component.
- France / China: electronics (same than above).

3.1) Starting point of FKPPL project

- The RPC project at CMS: ~ 100 people, including IRPC: ~ 30 people. Initially "concurrents" Italy/Korea vs France/China. Now fused within a common project.
- Till now major efforts was dedicated to the hardware development of iRPC chambers.
- Very limited ressources/expertise allocated to the simulation of the iRPC in CMS (~5 people)!
 - Required to define the exact parameters of the RPC chambers described previously.
 - Required by steering committee to justify the upgrade project.
- CMSRPC for FKPPL: bring together simulation experts from Korea and France to strengthen the effort:
 - 1 well defined new physics channel: Heavy Stable Charged Particles (HSCP) search.
 - 2 area of application: iRPC in L1 trigger for HSCP and in physics analysis.
 - Design and test of chambers based on results from simulations.

3.2) Teams

The direct contributors to FKPPL project are: all members are already active except K. Schablo who would start in September. Up to then we have a master student working on it (H. Khoudli)

ID: Title	<u>CMSRPC</u>							
List of	French Group			Korean Group				
participants	Name	Title	Affiliation	Name	Title	Affiliation		
	<u>Leader:</u>			<u>Leader:</u>				
	Maxime Gouzevitch	CR1	IPNL, Villeurbanne	Tae Jeong Kim	Associate Professor	Hanyang University		
	Konstantin Schablo	Student	IPNL, Villeurbanne	Sumin Jeong	Student	Hanyang University		

3.3) Location and project flow

- 3 locations:
 - IPNL: local team.
 - Hanyang: local team.
 - CERN: support of ~5 people permanently in CERN. Place where the results have to be regularly presented.

Steps:

- Before TDR we have 1-2 month left. We plan to perform some simple studies emulating L1 trigger behavior of iRPC alone.
- After TDR we plan to investigate in more details the combination of iRPC with the other upgraded Muons systems RPC, CSC in Trigger and offline analysis.

Exchanges:

- visit of Korean members to IPNL.
- visit of IPNL members to Hanyang University.
- 2 meetings at CERN in coincidence with test beams in GIF++.