

Geant4 modelling and experiments at the National Cancer Center

Se Byeong Lee – National Cancer Center, Goyang-si, Korea

on behalf of the Med-1/Protontherapy team

TYL-FKPPL Joint Workshop, May 10-12, 2017

Team

- Korea (National Cancer Center)
 - Lee, Se Byeong
 - Shin, Jae Ik
 - Kim, Chan Kyu
- France

- Le Postollec, Aurélie (Laboratoire d'Astrophysique de Bordeaux)
- Dobrijévic, Michel (Laboratoire d'Astrophysique de Bordeaux)
- Sakata, Dousatsu (CENBG)
- Sarramia, David (LPC Clermont)
- Incerti, Sébastien (CENBG)

Outline

- Overview of 2016 activities
 - Study of nanoparticles radiosensitization
 - Proton irradiation experiment for exobiology
 - Geant₄ tutorial

Proton beam facility at the National Cancer Center

IBA Proteus 235

Weight : 220 tons Height : 210 cm Diameter : 434 cm Energy : 230 MeV Max. extracted beam current : 300 nA RF frequency : 106 MHz

1) Simulation of radiotherapy boost effects using high-Z nanoparticles

- Hot topic: high-Z NP internalizezd in cells could boost energy deposition and thus increase the efficacy of radiotherapy treatments
 - Well established for photon beams (photoelectric effect), not so clear for proton beams in a context of protontherapy...
- Still a challenge to perform mechanistic simulations
 - We intiated a specific Geant₄ activity on the subject in 2015
 - Requires the simulation of Auger cascades, simulation of chemical radical species production in the vicinity of NP
 - in collaboration with KEK group (T. Sasaki, K. Murakami, S.
 Okada) see FJPPL project
 - in collaboration with Ton Duc Thang U. in Vietnam (H. Tran)

E.g. Radiolysis Enhancement Factor as a function of distance from GNP compared to WNP

Nucl. Instrum. Meth. B 373 (2016) 126-139

2) Protons for Astrobiology

routone.

Irradiation of hypothetical organic matter on Mars

Context

- Mars exploration : the search for extraterrestrial life is one of the greatest challenges in the astrobiology field
- Biochips recommended by space agencies
- SOLID project (V. Parro et al. Spain)
 - "Antibody" biochip to detect molecules of interest
 - free and grafted Ab
- Instrument proposed to MARS2020 rover

	Expected molecule targe	
Table D.1-1. SOLID targets for Mars2020		
Simple abiotic organics (Category 1)	LOD	Implications of detection
Meteoritic amino acids (Ala, Asp, Glu, Val, Ival,	<20	Elevated potential for biosignatures.
Ser)		Sample should be selected for return.
PAHs (Naphthalene, Pyrene, Anthracene,	<10	Meteorites deliver organics to Mars
Quinoids)		Building blocks of life are present
Oxidation products (Mellitic, Benzoic)	<5 TDD	
Meteoritic nucleobases (A, G, C, U, Xa)	TBD	
Possible organic biomarkers (Category 2)		
Aromatic amino acids (Phe, Tyr, Trp; α-AIB)	<20	High potential for biosignatures.
Nucleotide & derivatives (AMP; GMP; C-GMP)	TBD	Sample should be selected for return.
Hydrocarbons (Alkanes, Kerogen,	< 500	Prebiotic or blotic chemistry
Aikyidibenzotnipnene)		
Definitive organic biomarkers (Category 3)		
Hydrocarbons (Isoprenoid, Carotenoid,	<500	Definitive biosignatures
Alkylphenanthrene)		Life once existed on Mars
Lipids (Hopanes, Steranes, Lycopanes, Carotanes)	<500	Sample should be selected for return.
Polymers (Peptides, Nucleic Acids,	<5	Planetary Protection concerns
Heterogueles (Porphyric rice)	~5	
Forward Contamination (Category 4)	~	
Forward Containination (Category 4)	*10.3	TTI and have for and
Earth Organisms (Bacillus, Streptomyces,	10.5	There has been forward
Pseudomonas, E. coli, Clostridium Propionibacterium)	*10.4	microotoonisms
LOD - Lower Limit of Detection pph (ng/m) in complete	stract *C	elle (gram (r - v pph organice) TBD To
be developed - possible descope option.		

History

- Long term collaboration between Laboratoire d'Astrophysique de Bordeaux and CENBG
 - 10 publications, 1 PhD
- Geant₄ simulations
 - Radiation environment of a biochip on a mission to Mars
 - Radiation environment outside the International Space Station
 - Preparation of irradiation experiments with several beam types
- Irradiations on AIFIRA platform@CENBG to study antibody resistance to protons and

neutrons

More antibody irradiations

- **Protons and neutrons** irradiations at Louvain-la-Neuve (Belgium)
- C and O ions irradiations at LNS Catania (Italy)
- Electrons at Bergonié Institute in Bordeaux

• EXPOSE-R2 mission outside the International Space station for 18 months (ISS) (analysis in progress)

C, O @ LNS

Next step

To reproduce long time irradiation (high dose radiation) of molecules

(epitope) in order to confirm that a biochip (constituted of antibodies) could detect them even if

they have been degraded by a long journey at Mars surface.

- Target molecules (epitopes) are irradiated (not ligands !)
- Molecules exposed to doses reproducing a very long time irradiation at Mars surface (around 1-10 My) – 0.2 mGy/day on Mars – 1 My = 77 kGy

• Analysis is on-going

Irradiation @ AIFIRA - CENBG

- March 8, 2017
- Energy: <u>3 MeV</u>
- Current : 550 pA
- Flux: <u>9E9 p/cm²/s</u>
- 2 doses : 50 kGy and 500 kGy
- 12 slides
 - 10 slides to irradiate: 5 slides/dose
 - 2 reference slides
- Analysis is on-going...

3) Outreach : Geant4 tutorial

https://hep.kisti.re.kr/indico/ conferenceDisplay.py? ovw=True&confld=214

- Strong support of FKPPL and Korean institutions (KISTI, NCC) for the organization of regular Geant4 tutorials in Korea
- For HEP and medical physics communities
- This year, 40 particpants (PhD students, postdocs, researchers)
- 3 teachers: M. Asai (SLAC), M. Novak (CERN), S. Incerti (IN2P3)
- 7 tutorials since 2009 in Rep. Korea
 - Geant4 tutorial, Dec. 9-10, 2016 KISTI, Daejeon, Rep. Korea
 - Geant4 tutorial, Oct. 30 Nov. 1, 2015 National Cancer Center, Ilsan, Rep. Korea
 - Geant4 tutorial, October 27-29, 2014 KISTI, Seoul, Rep. Korea
 - Geant4 Tutorial October 29 November 2, 2012 KISTI, Seoul, Rep. Korea
 - 2011 Fall Training Course on Geant4 and GATE October 31- November 4, 2011 KISTI, Seoul, Rep. Korea
 - 2010 Summer Training Course on Geant4, GATE and Grid Computing July 7-10, 2010 Seoul, Rep. Korea
 - Introduction to Geant4, November 10, 2009 KISTI, Daejeon, Rep. Korea

Future

- Continuation of NCC irradiation experiments for astrobiology
 - Smaller dose rates ?
 - Publication to prepare
- A 5-day Geant4 general scope tutorial in Seoul in July 2016
- Deliver in Geant4 an example demonstrating the combination of Geant4-DNA physics+chemistry+Gold NP in a realistic cellular nucleus (after publication)

Publications

- 2 publications
 - Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation,
 H. N. Tran, M. Karamitros, V. Ivantchenko, S. Guatelli, S. McKinnon, K.
 Murakami, T. Sasaki, S. Okada, M.C. Bordage, Z. Francis, Z. EL Bitar,
 M. A. Bernal, J. I. Shin, S. B. Lee, Ph. Barberet, T.T. Tran, J. M. C.
 Brown, S. Incerti, Nucl. Instrum. Meth. B 373 (2016) 126-139
 - Recent developments in Geant4, J. Allison et al., by the Geant4
 Collaboration, Nucl. Instrum. Meth. A 835 (2016) 186-225

Meeting with NRF on Dec 7th

- FKPPL management : P. Ko, S. Hwang, D. Sarramia, S. Incerti
- French embassy Science Attaché & chargée de mission : E. Franco-Ritz, E. Cuinet
- NRF directorate: Jong Deok Kim, director of international programs for Europe & Africa, Mrs Kim in charge of France-Korea programs

Triggered France-Korea CNRS-NRF Call 2018-2019

Thanks for your attention !