

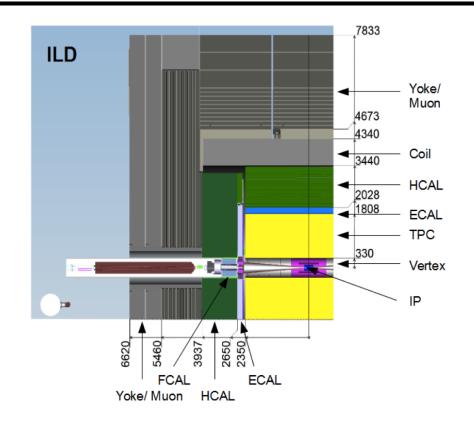
Toward the final design of a TPC for the ILD detector (D_RD_9)

Keisuke Fujii, Serguei Ganjour

KEK, Tsukuba, Japan CEA-Saclay/IRFU, Gif-sur-Yvette, France

TYL-FJPPL Workshop Institut Pluridisciplinaire Hubert CURIEN (IPHC), Strasbourg May 10-12, 2017

International Large Detector (ILD)



International Linear Collider (ILC) project in Japan:

- energy range (baseline design): staged project starting at 250 GeV (upgradeable to 1 TeV)
- **ILC** is planned with two experiments
- TPC is the central tracker for International Large Detector (ILD)

™ ILD components:

- vertex detector
- few layers of silicon tracker
- gaseous TPC
- ECAL/HCAL/FCAL
- **■** superconducting coil (3.5 or 4 T)
- muon chambers in iron yoke

™ ILD requirements:

momentum resolution:

$$\delta(1/p_T) \leq 2 imes 10^{-5} GeV^{-1}$$

- impact parameters: $\sigma(r\phi) \leq 5\mu m$
- jet energy resolution:

$$\sigma_{\rm E}/{\rm E} \sim 3-4\%$$

D_RD_9 Project

The feasibility of a MPGD TPC for the Linear Collider (LC) was demonstrated in D_RD_2 project

- Construction and tests of a MPGD TPC endplate prototype for the LC
- ILD detector baseline document was completed in March 2013

™ D_RD_9 project started in April 2013

- **Bordeaux 2014:** software, analysis of beam test data
- **Okinawa 2015:** steps toward an engeneering design
- Seoul 2016: running in final phase

We demand 1 year prolongation of the project

- need to finalize remaining issues
 - → ion backflow and gating
 - → cooling (micro-cooling circuit option)
 - → mitigate and correct field distortions
- lack of funding and manpower
- decision about ILC will be taken in about 1 year

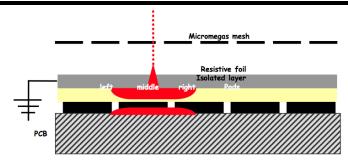
TPC Tracker for ILD

TPC is the central tracker for International Linear Detector (ILD)

- Large number of 3D points
 - **■** continuous tracking
- Particle identification
 - **➡** dE/dx measurement
- Low material budget inside the calorimeters (PFA)
 - ightharpoonup barrel: $\sim 5\% {
 m X}_0$
 - $^{ ext{\tiny IIII}}$ endplates: $\sim 25\% X_0$

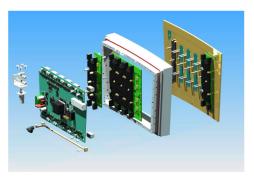
Two gas amplification options:

- Gas Electron Multiplier (GEM)
- → MicroMegas (MM)
 - → pad-based charge dispersion readout
 - → direct readout by the TimePix chip


TPC Requirements in 3.5 T

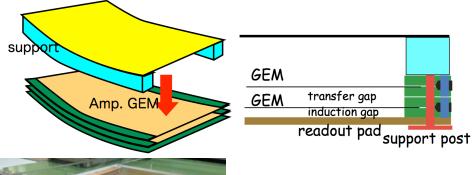
- **■** Momentum resolution:
 - → $\delta(1/p_T) \le 9 \times 10^{-5} GeV^{-1}$
- **Single hit resolution:**
 - $\rightarrow \sigma(r\phi) \le 100 \mu m$ (overall)
 - $\rightarrow \sigma(Z) \simeq 400 \mu m$
- **Tracking efficiency:**
 - \rightarrow 97% for $p_T \ge 1 GeV$
- **→** dE/dx resolution: 5%

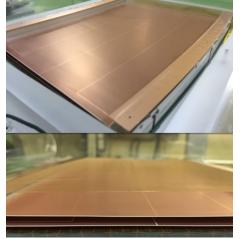
Prototype Technologies



™ Charge density function

$$\rho(r,t) = \frac{RC}{2t} \exp[-\frac{-r^2RC}{4t}]$$

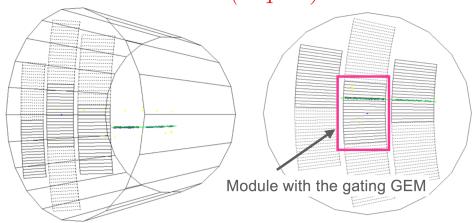

R- surface resistivity

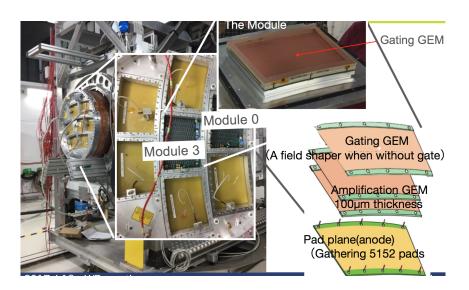

C- capacitance/unit area

MM: T2K readout concept

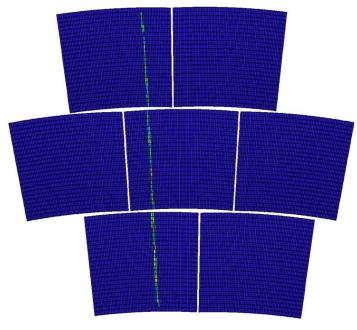
72-channel AFTER chip (12-bit)

© GEM: modified ALTRO readout


■ 16-channel ALTRO chip (10-bit)

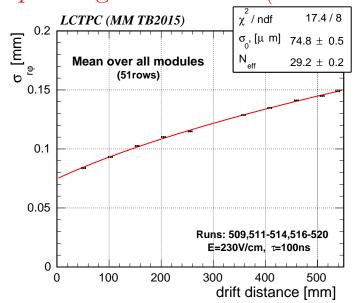


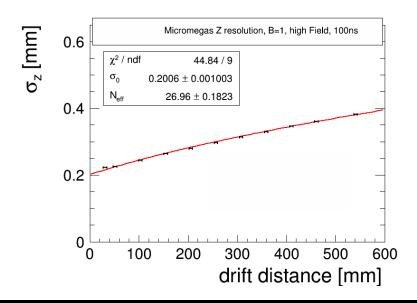
TPC Large Prototype at DESY



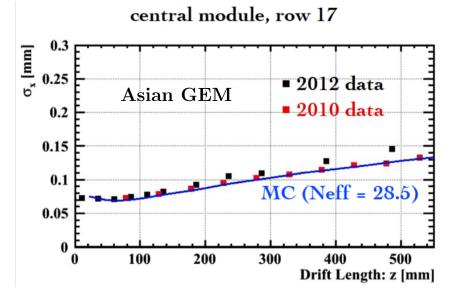
GEM (Japan)

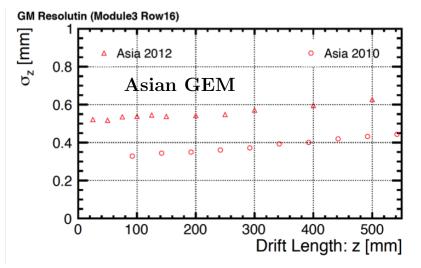
MicroMegas (France)



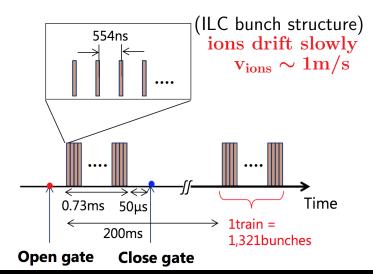


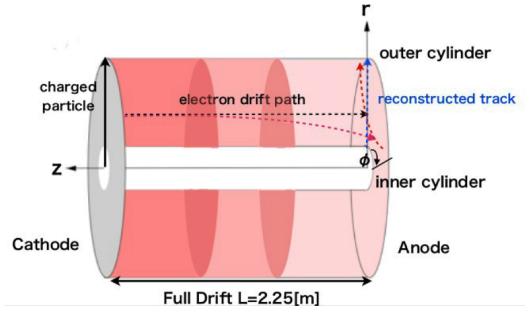
Resolution




MM peaking time 100 ns (AFTER)

GEM peaking time 120 ns (ALTRO)

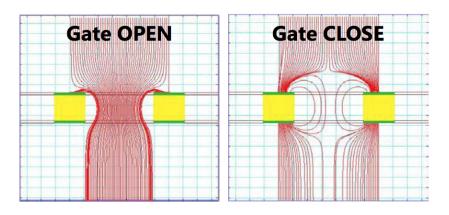



Ion Backflow

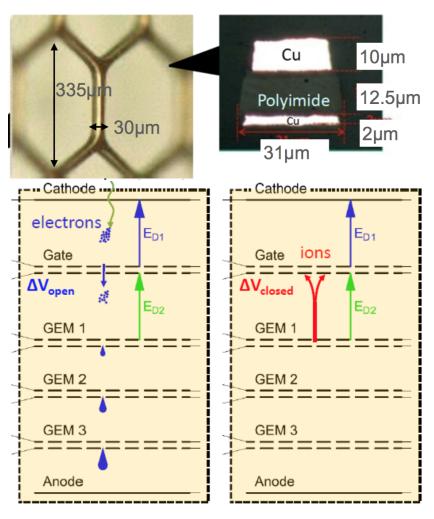
Ion Space Charge can deteriorate the position resolution of TPC

- Primary ions yield distortions in the E-field which result to $O(\leq 1\mu\mathrm{m})$ track distortions
- Secondary ions yield distortions from backflowing ions generated in the gas-amplification region:
 - for the case of 2 ion disks

Gate is needed!



Ion Gating

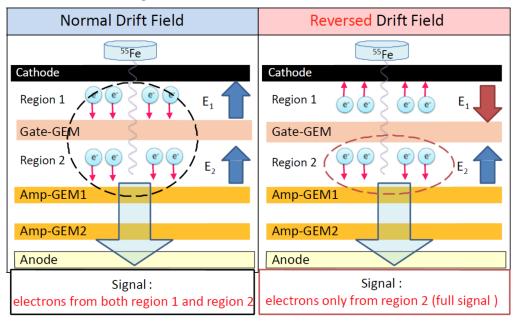


Gating: open GEM to stop ions while keeping transparency for electrons

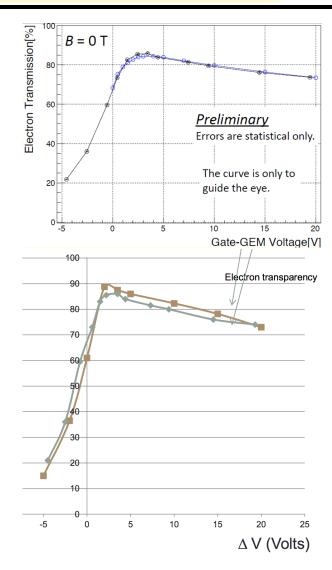
- A large-aperture gate-GEM with honeycomb-shaped holes
 - **➡** produced in Japan
 - handed to Saclay for transparency measurements with MM
 - use test setup at CERN

French team: simulating in hardware an ion disk with a UV lamp

The ions must be stopped before penetrating too much the drift region
The device to stop them must be transparent to electrons


GEM gating –Large aperture GEM transparency

Electron transmission rate as a function of GEM voltage measured with Fe⁵⁵

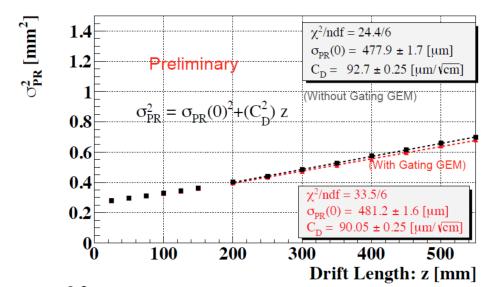

Measurement using 55 Fe

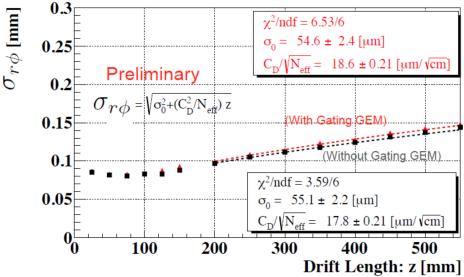
We measured the signals with the normal and reversed drift fields for each ΔV .

Extrapolation to 3.5 T shows acceptable transmission for electrons (80%)

Simulation shows that ion stopping power better than 10^{-4} at 10 V reversed biases

Measurement in Japan with GEM and measurement at CERN with MM are consistent

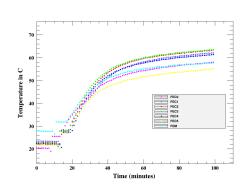

Test beam Results for Gating

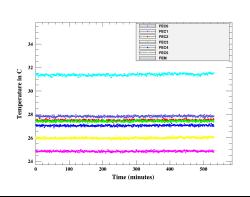


A module with a gating GEM has also been tested in beam in November 2016

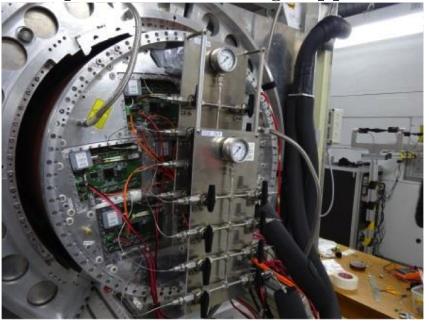
- at DESY TPC Large Prototype
 - readout TPC module with a gating GEM
 - 15 participants from Japan, France, Germany, China
- The results are consistent with no more degradation than expected (10%)
- The analysis is still in progress

GEM gating seems to be a possible solution for the gating at ILC


2-Phase CO₂ Cooling



Cooling of the electronic circuit is required due to power consumption

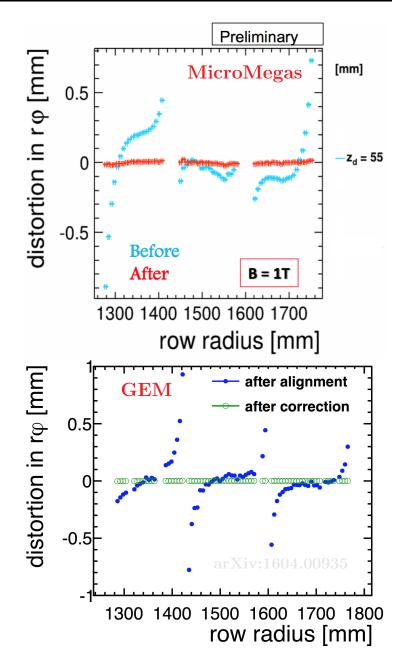

- Temperature of the circuit rises up to 60°C
 - cause a potential damage of electronics
 - covect gas to TPC due to a pad heating
- A 2-Phase CO₂ cooling with the KEK cooling plant TRACI was provided to 7 MM modules during 2014/15 beam tests at DESY
 - **→** 10°C at P=45 bar system operation

About 30°C stable temperature was achieved during operation of 7 MM modules

2-phase CO_2 cooling support

- Thermal behavior and effect of cooling have been simulated
 - D.S. Bhattacharya et al., JINST 10 P08001, 2015"

Cooperation for industrial contacts for the micro-cooling circuit option


Track Distortions

Non-uniform E-field near module boundaries induces ExB effects

- Module frames at ground while the top GEM or Micromesh is at HV
 - induces distortions of about 0.5 mm
 - → worth to minimize at design level
 - → new design should suppress this effect
 - accounted as systematic residual offsets
 - determined on a row-by-row basis
 - ightharpoonup correct residuals to zero at ${
 m about} \ 20 \mu{
 m m}$
- Good agreement with simulations
 - E and B field inhomogeneity at module boundaries and near the edges of the magnet

In this project we refine the simulations and work on possible countermeasures

Electronics

The beam test electronics are not those to be used in the ILD detector

- AFTER (T2K chip) is not extrapolable to

 Switched Capacitor Array (CSA) depths of 1 bunch train
- ALTRO does not satisfy power consumption requirements

S-Altro 16 has to evolve

- improve packing factor (probably 65 nm)
- lower power consumption
- power pulsing from the beginning

Final design based on S-Altro 16 requires a renewed project

- current effort on being made at Lund University
- this is not in the final form
- could still use it to test cooling, power-pulsing, etc

Design of a large GEM and MM modules with cooling and high channel density has been started

Members, Funds

		S	Spending on I	rench Funds				
Description		€/unit		Nb of units	Total (€)	Provided by:1		
KEK/LCWS (Morioka) S. Ganj	our		172/day	14 days	2408	IRFU/E-JADE		
14 days			676	1 travel	676	IRFU/E-JADE		
KEK/LCWS (Morioka) P. Cola	s		179/day	14 days	2506	IRFU/E-JADE		
14 days			628	1 travel	628	IRFU/E-JADE		
KEK/TYL-FJPPL (Seoul) S. Ga	anjour		146/day	11 days	1606	IRFU		
11 days		1191		1 travel	1191	IRFU		
Total					9015			
			Spending on	KEK Fund				
Description		k¥/Unit		Nb of units	Total (k¥)	Provided by:		
France (Saclay) K. Fujii / 7 days		109		2 travel 218		KEK		
TYL-FJPPL (Seoul) K. Fujii / 2 days		40		1 travel	40	40 KEK		
France (Saclay) A. Sugiyama / 1 day		190		1 travel	190 KEK			
rance (Saclay) Y. Aoki / 3 days		160		1 travel	160	KEK		
France (Saclay) R. Yonamine / 3 days		165		1 travel	165 KEK			
France (Saclay) T. Ogawa / 14 days		400		1 travel	400	Sokendai University		
France (Saclay) K. Fujii / 3 days		173		1 travel	173	IPNS/KEK		
Total					1346			
	,		,	\ <u>\</u>				
Additional spendi	ing on Fre	nch fun	ıds	Add	itional spendir	ıg on Japan fun	ds	
Provided by:2	Туре		€	Provided by: ³		Туре	k¥	
IRFU/CEA	Consum	ables	23000	IPNS/KEK		Equipment	4000	
IRFU/CEA	Travel		25000					
Total			48000	Total			4000	

$ightharpoonset{ \begin{tabular}{l} \end{table} AIDA 2020 \ has been granted \end{tabular} }$

- contains a gaseous detector part
- spans 2015-2018

Request for April 2017 to March 2018

	F		Japanese Group						
	Name	Title	Lab./Orga	nis. ²	Name		Title	Lab/Organis.3	
	S. Ganjour	Dr.	IRFU/CEA	K. I	K. Fujii		Dr.	KEK	
Leader Members	P. Colas	Dr.	IRFU/CEA	T. F	T. Fusayasu		Dr.	Saga Univ.	
	D. Attie	Dr.	IRFU/CEA	K. K	K. Kato		Dr.	Kinki Univ.	
	I. Giomataris	Dr.	IRFU/CEA	M. F	M. Kobayashi		Dr.	KEK	
	A. Giganon	Mr.	IRFU/CEA	T. M	T. Matsuda		Dr.	KEK	
	V. Sharyy	Dr.	IRFU/CEA	A. S	A. Sugiyama		Dr.	Saga Univ.	
	B. Tuchming	Dr.	IRFU/CEA	Т. Т	T. Takahashi		Dr.	Hiroshima Univ.	
				T. W	T. Watanabe		Dr.	Kogakuin Univ.	
				S. N	S. Narita		Dr.	Iwate Univ.	
				K. N	K. Negishi		Dr.	Iwate Univ.	
				Т. О)gawa		Mr.	Sokendai/KEK	
				Y. A	Y. Aoki A. Shoji		Miss	Sokendai/KEK	
				A. S			Miss	Iwate Univ.	
		Fu	nding Request	from Fran	ce				
Description		€/	€/unit		Nb of units Total (€)		Requested to4:		
Visit to Japan			150/day	45	45 days 6		IRFU/E-JADE		
Travels			1000	3 tr	ravel	3000	IRFU/E-JADE		
							-		
Total						9750			
		Fı	anding Reques	t from KEI	K				
Description		k¥/	k¥/Unit		its	Total (k¥)	Requested to:		
Travel			200		4 travel 800) KEK		
Visit to France			20/day	28	days	560	KEK		
Travel + per dier	n		600		1	600			
Total						1960			

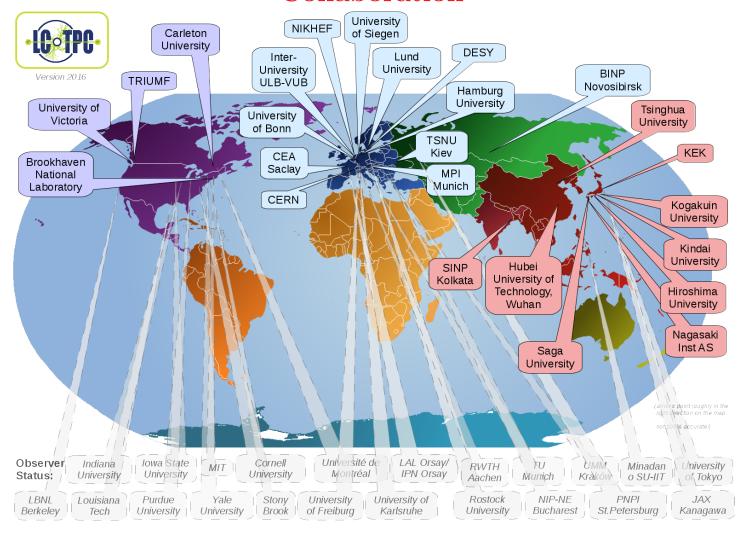
- Saclay applied to an EU RiSE grant (GANDALF project)
 - fund travels to Japan for 4 years
 - includes TPC R&D

Conclusions

16

- The French-Japan R&D work within the LCTPC collaboration is in a phase of engineering toward the final design of a TPC for the ILD detector
 - this is also a preparation for the technology choice
- Despite very difficult conditions, the R&D is in progress:
 - a module with a gating GEM has been tested
 - the results are consistent with no more degradation than expected
 - GEM gating seems to be a possible solution for the gating at ILC
- We demand one year extension of the D_RD_9 project to finalize the remaining issues before ILC decision is taken
- Special thanks to P. Colas and A. Sugiyama

Backup


Backup

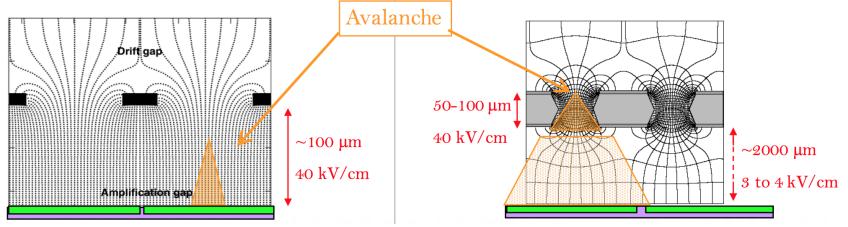
LCTPC Collaboration

Extensive R&D for ILC TPC is active research area of the LCTPC Collaboration

Total of 12 countries from 25 institutions members + several observer institutes

Micro Pattern Gas Detectors (MPGDs)

Technology choise for TPC readout: Micro Pattern Gas Detector (MPGD)


- no ExB effect, better ageing, low ionback drift
- easy to manufacture, MPGD more robust mechanically than wires

Resistive Micromegas (MM)

- MICROMEsh GAseous Structure
- metalic micromesh (pitch ${\sim}50~\mu\mathrm{m}$)
- supported by 50 μm pillars
- multiplication between anode and mesh (high gain)

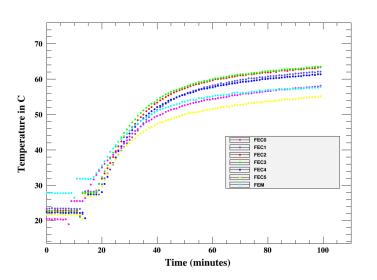
™ GEM

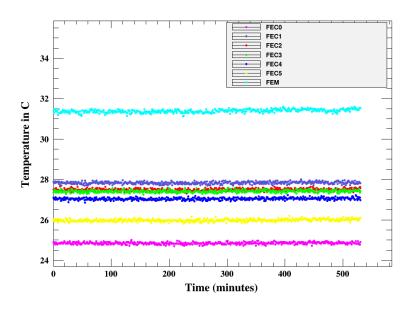
- **Gas Electron Multiplier**
- doublesided copper clad Kapton
- multiplication takes place in holes,
- 2-3 layers are needed to obtain high gain

Discharge probability can be mastered (use of resistive coatings, several step amplification, segmentation)

2-Phase CO₂ Cooling

About 26 W power consumption is currently measured per MM module


- Temperature of the circuit rises up to 60°C
 - cause a potential damage of electronics
 - covect gas to TPC due to a pad heating


Cooling of the electronic circuit is required!

- Principle: CO₂ has a much lower viscosity and a much larger latent heat than all usual refrigerants
 - the two phases (liquid and gas) can coexist at room temperature under pressure
 - very small pipes suffice
 - hold high pressure with low material
- № 10°C at P=45 bar system operation

About 30°C stable temperature was achieved during operation of 7 MM modules

Module 6 (S3B)

