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« Never underestimate the joy 
people derive from hearing 

something they already know.»
E. Fermi

« It doesn't matter how 
beautiful your theory is, it 

doesn't matter how smart you 
are. If it doesn't agree with 

experiment, it's wrong.»
R. Feynman
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A la mémoire de Pierre Binetruy



A tribute to Vera Rubin

Vera Rubin  
(1928-2016)
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The first DM paper
Contrarily to the common belief, the first time the word « dark matter » is proposed in a 
scientific paper is not Oort in 1932 but Poincaré in 1906.  Indeed, Lord Kelvin in 1904 

had the genius to apply the kinetic theory of gas recently elaborated, to the galactic 
structures in his Baltimore lecture (molecular dynamics and the wave theory of light). 
Poincaré was impressed by this idea and computed the amount of stars in the Milky 

way necessary to explain the velocity of our sun one observes nowadays.
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Where are we now?



1 

The direct detection race



Perspectives

Julien Masbou, Moriond EW 2017, 23rd March 2017 30

PandaX-II	continue	data	taking	with	~400kg

XENON1T	is	analyzing	Science	Run	0	!

And	other	analysis	
already	published	or	
to	come:
- Axions /	ALP
- 2n double	electron	

capture	on	124Xe
- Low	mass
- Effective	field	

theories
- Calibration
- …
- Stay	tuned	!

XENONnT	&	LZ	construction	is	starting…
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The indirect detection status



Latest result by FERMI in May: nothing
   Aldo Morselli,  INFN Roma Tor Vergata                                        DSU 2016                                       28 July 2016 	 17	

DM limit improvement estimate in 15 years with the composite  
likelihood approach (2008- 2023) 

15 Years, 45 dwarfs 

E. Charles et.al, Phy Rep. 636 2016, arXiv:1605.02016  



Conclusion
The non-observation of any signal at direct and indirect 

detection experiments constrains the interaction cross section 
DM-SM to values below σ < 10-46 cm2 ~ 10-18 GeV-2  

What do we expect for a WIMP*:

*Not valid if one exchanges the Higgs or a Z’
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« The waning of the WIMP? 
Review of Models, Searches and 

Constraints » 

G. Arcadi, M. Dutra, .P. Ghosh, M. Lidner, Y.M.,  
M. Pierre, S. Profumo and F. Queiroz;  

arXiv:1703.07364 



The WIMP miracle !

Why are we so attached to 
WIMP-like particle?
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Taking g⇢ ' 100 (see Fig.(2.5)), xf ⇠ 20 (Eq.(2.114)) and the value of ⇢0
c of Eq.(2.4) we can

write22

⌦Ah2 ' 0.17
h�vi

(1.2⇥10�26 cm3 s�1)

(2.105)

This is oftenly called ”WIMP miracle”. Indeed, we see that for a typical electroweak cross
section the relic abundance ⌦A reach 0.17/h2 ' 0.3 which is the measured value of the
matter content in the Universe. Some corrections has to be taken into account: the velocity
at decoupling time is not c, the value of xf should be computed iteratively (see next section
for a more complete calculation) and the dependance on the e↵ective degree of freedom or
mass of dark matter should be looked carefully. However, this approximation is surprisingly
quite accurate in any models with s-wave dominated annihilation process.

General solution

Now that we understood how to compute the relic abundance in a specific case, we can now
apply the same method in the generic case, developing �v = a + bv2, v being the relative
velocity between the two annihilating particles23. Notice that in the In the he Boltzmann
equation, it is not �v which enters in the definition of � in Eq.(2.98) but the thermal averaged
cross section h�vi. At the temperature of interest at freeze out (xf = m/Tf ⇡ 20 as we will
compute more in detail later on) we can consider that the annihilating particles ”1” and
”2” is non-relativistic and thus their Boltzmann distributions (2.23) can be approximate by
fi ' e�Ei/T ' e�(m+p2

i /2m)/T . One thus can write
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We can thus deduce ha+bv2i = a+bhv2i with in the non-relativistic limit v = |p2�p1|/m We
then have v2 = (|p1|2 + |p2|2 � 2p1p2 cos ✓)/m2, ✓ being the angle between the two colliding
particles. Noticing by symmetry that hcos ✓i = 0 and h|p1|2i = h|p2|2i, using Eq.(B.39) we
then can write24
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giving

22h�vi has been normalized to a typical electroweak cross section for a 100 GeV particle: 10�9 GeV�2 =
1.2 ⇥ 10�26cm3 s�1, Eq.(2.99).

23We define the relative velocity between two particles i and j by vij =
p
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, with pi and Ei

being four-momentum and energy of particle i.
24See the section (2.5.1) for another way to lead the integration for the mean h�vi.
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FIG. 1. Comoving number density evolution as a function of the ratio m�/T in the context of

the thermal freeze-out. Notice that the size of the annihilation cross section determines the DM

abundance since ⌦DM / 1/h�vi.

remarkable is the fact that independent theoretical reasons, such as naturalness and the

hierarchy problem, indicate that it is plausible to expect new physics at E
EW

; Moreover,

weak interactions are the only gauge interactions in the Standard Model that a DM

particle might interact through.

The WIMP paradigm is thus an attractive solution of the DM issues since the DM

abundance is set to the observed value by a new physics scale that is well motivated,

and by interactions mediated by one of the Standard Model gauge interactions. As a

result, concrete realizations of WIMP models had been developed in di↵erent Beyond

the Standard Model (BSM) frameworks, accessible to several di↵erent search strategies,

as reviewed in the next sections.

Operationally, all the information about the particle physics framework connected to

a specific DM particle candidate is contained in the thermally pair averaged cross section
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a SIMP (Strongly Interacting Massive Particle)

Huge advantage: no need to advocate coupling the the SM: no conflict to direct 
detection experiments. But strong coupling can be excluded by self interaction



The Bullet Cluster constraint

 The Bullet Cluster (1E 0657-558) consists of two colliding clusters of galaxies. Strictly 
speaking, the name Bullet Cluster refers to the smaller subcluster, moving away from the larger 
one. It is at a co-moving radial distance of 1.141 Gpc (3.7 billion light-years) and contains 
around 40 galaxies. They move at around 4500 km/s. 
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DIRECT CONSTRAINTS ON THE DARK MATTER SELF-INTERACTION CROSS-SECTION FROM THE MERGING
GALAXY CLUSTER 1E 0657–56

M. MARKEVITCH1, A. H. GONZALEZ2, D. CLOWE3,4 , A. VIKHLININ1,5, W. FORMAN1, C. JONES1, S. MURRAY1, W. TUCKER1,6

ApJ in press; astro-ph/0309303 v2

ABSTRACT
We compare new maps of the hot gas, dark matter, and galaxies for 1E 0657–56, a cluster with a rare, high-
velocity merger occurring nearly in the plane of the sky. The X-ray observations reveal a bullet-like gas sub-
cluster just exiting the collision site. A prominent bow shock gives an estimate of the subcluster velocity, 4500
kms−1, which lies mostly in the plane of the sky. The optical image shows that the gas lags behind the subclus-
ter galaxies. The weak-lensing mass map reveals a dark matter clump lying ahead of the collisional gas bullet,
but coincident with the effectively collisionless galaxies. From these observations, one can directly estimate the
cross-section of the dark matter self-interaction. That the dark matter is not fluid-like is seen directly in the X-
ray – lensing mass overlay; more quantitative limits can be derived from three simple independent arguments.
The most sensitive constraint, σ/m < 1 cm2 g−1, comes from the consistency of the subcluster mass-to-light
ratio with the main cluster (and universal) value, which rules out a significant mass loss due to dark matter
particle collisions. This limit excludes most of the 0.5 − 5 cm2 g−1 interval proposed to explain the flat mass
profiles in galaxies. Our result is only an order-of-magnitude estimate which involves a number of simplifying,
but always conservative, assumptions; stronger constraints may be derived using hydrodynamic simulations of
this cluster.
Subject headings: dark matter — galaxies: clusters: individual (1E0657–56) — galaxies: formation — large

scale structure of universe

1. INTRODUCTION
1E 0657–56, one of the hottest and most X-ray luminous

galaxy clusters known, was discovered by Tucker et al.
(1995). It was first observed by Chandra in October 2000
for 24 ks. That observation revealed a bullet-like, relatively
cool subcluster just exiting the core of the main cluster, with
a prominent bow shock (Markevitch et al. 2002, hereafter
M02). A comparison of the X-ray and optical images revealed
a galaxy subcluster just ahead of the gas “bullet”, which led
M02 to suggest that this unique system could be used to de-
termine whether dark matter is collisional or collisionless, if
only one could map the mass distribution in the subcluster.
Apart from the obvious interest for the still unknown nature
of dark matter, the possibility of it having a nonzero self-
interaction cross-section has far-reaching astrophysical impli-
cations (Spergel & Steinhardt 2000; for more discussion see
§3.2 below).

Just such a map of the dark matter distribution in
1E 0657–56 has recently been obtained by Clowe, Gonza-
lez, & Markevitch (2004, hereafter C04) from weak lensing
data. It reveals a dark matter clump coincident with the cen-
troid of the galaxies (Fig. 1a). C04 also derived M/L ra-
tios of the main cluster and the subcluster and found them in
agreement with each other and with other clusters’ values. In
addition, Chandra re-observed 1E 0657–56 for 70 ks in July
2002, from which a more accurate estimate of the shock Mach
number was derived using the gas density jump at the shock,
M = 3.2+0.8

−0.6 (all uncertainties 68%), which corresponds to a

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cam-
bridge, MA 02138; maxim@head.cfa.harvard.edu

2 Department of Astronomy, University of Florida
3 Institut für Astrophysik und Extraterrestrische Forschung der Universität

Bonn, Germany
4 Stewart Observatory, University of Arizona
5 IKI, Moscow, Russia
6 University of California at San Diego

shock (and bullet subcluster) velocity of vs = 4500+1100
−800 kms−1

(Markevitch et al., in prep., hereafter M04). The new X-ray
data also further clarified the geometry of the merger.

In this paper, we combine these new optical and X-ray data
to constrain the self-interaction cross-section of dark matter
particles. We use Ω0 = 0.3, ΩΛ = 0.7, H0=70 km s−1 Mpc−1,
for which 1′′ = 4.42 kpc at the cluster redshift z = 0.296.

2. COLLISIONAL CROSS-SECTION ESTIMATES
The dark matter collisional cross-section, σ, can be con-

strained from the 1E 0657–56 data by at least three indepen-
dent methods, using simple calculations described in the sec-
tions below. They are based on the observed gas–dark mat-
ter offset, the high subcluster velocity, and the subcluster sur-
vival. First, we give the main assumptions that will go into
these calculations.

There are two estimates of the total masses of the subclus-
ter and the main cluster — from the galaxy velocity dispersion
(Barrena et al. 2002) and from weak lensing (C04). Given the
disturbed state of this system, virial or hydrostatic mass esti-
mates (either from galaxy velocities or the gas temperature)
can be incorrect, and we chose to use the direct weak lensing
measurements from C04 even though their formal statistical
accuracy is poorer. The main cluster’s lensing signal can be
fit by a King mass profile ρ = ρ0(1 + r2/r2

c )−3/2 with best-fit
parameters ρ0 ≃ 2.6× 10−25 gcm−3 and rc ≃ 210 kpc (C04).
These two parameters are degenerate so their individual er-
ror bars are not meaningful; the quantity of interest to us is
the central mass column density (approximately proportional
to ρ0rc), which is measured with a 16% accuracy. This mass
profile is very close to the Barrena et al. NFW profile at all
radii outside the core. A King profile is marginally preferred
over an NFW profile (also acceptable statistically).

The projected mass excess created by the subcluster is de-
tected in the lensing data with a 3.0σ significance. The sub-
cluster mass signal is detected to r ≃ 150− 200 kpc from the

1 cm2/g = 1.8⇥ 1012pb/GeV = 4.62⇥ 103GeV�3



A Non-abelian Vectorial Dark Matter (VSIMP) 
respects naturally all these properties  

S.M. Choi, Y. Hochberg, E. Kufflik, H.M. Lee, Y.M., H. Murayama, Mathias Pierre, « Vector SIMP dark matter » 1705.xxxxx

e↵ects of forbidden channels on the relic density. Methods for achieving kinetic equilibrium
between the dark and visible sectors via Higgs mixing and/or gauge mixing are addressed
in Section 4. We conclude in Section 5.

2 The model

We consider as a toy model for non-abelian SIMP dark matter a SU(2)X ⇥ U(1)Z0 gauge
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kinetic mixing with the SM hypercharge. The dark Higgs fields interact with the vector
dark matter via dark gauge couplings, and with the SM Higgs doublet H via the Higgs-
portal coupling, leading to an additional messenger channel between the dark and visible
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The Lagrangian for the dark sector is given by

L = �1

4
~Xµ⌫ · ~Xµ⌫ � 1

4
Z 0

µ⌫Z
0µ⌫ � 1

2
sin ⇠ Z 0

µ⌫B
µ⌫ + L

scalar

+ LCS (1)

where the field strength tensors are ~Xµ⌫ = @µ ~X⌫ � @⌫ ~Xµ + gX( ~Xµ ⇥ ~X⌫) and Z 0
µ⌫ = @µZ

0
⌫ �

@⌫Z
0
µ, and the gauge kinetic mixing between Z 0 and the SM hypercharge Bµ is parameterized

by sin ⇠. The Lagrangian for the scalar sector including the SM Higgs is given by

L
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= |DµH|2 + |Dµ�|2 + |DµS|2 � V (H,�, S) (2)
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S|S|2 + �S|S|4
+�
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�S|�|2|S|2. (3)

After expanding the dark Higgs fields around the VEV as � = 1p
2

(0, vX + �)T and

S = 1p
2

(vZ0 + s) in unitary gauge, one obtains gauge boson masses of mX = 1

2

gXvX and
mZ0 = gZ0vZ0 . The self-interactions of the vector dark matter and its interactions with the
dark Higgs are given by

L � �1

2
gX(@µ ~X⌫ � @⌫ ~Xµ) · ( ~Xµ ⇥ ~X⌫)� 1

4
g2X( ~Xµ · ~Xµ)2
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4
g2X( ~X⌫ · ~Xµ)( ~Xµ · ~X⌫) +
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2
m2

X
~Xµ · ~Xµ
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v2X

◆
. (4)

We will assume that the dark Higgs s associated with Z 0 is heavy and thus do not consider
its interactions with the other fields in what follows.
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Figure 1: The parameter space of vector SIMP dark matter in the mX vs. ↵X ⌘ g2X/(4⇡)
(top) or mh1 (bottom), when considering 3 ! 2 annihilation channels only. The Planck
3� measurement [1] of the relic density is show in red in both plots. Contours of the
self-scattering cross section of �

self

/mX = 0.1, 1, 10 cm2/g are shown in the dotted, dashed
and dot-dashed curves, respectively. We have chosen mh1 = 4mX on top and ↵X = 1, 2 on
bottom. The shaded regions in the lower panel are where the 2 ! 2 channel dominates.
[YANN: we wrote �self in the text an caption, but on the figure it is �scatt]
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Conclusions

The WIMP « miracle » is severely in conflict with 
the observation 

Sequestring the dark matter is the more obvious 
alternative but it should overclose the Universe

Unless 3->2 process dominates.

Stability of Dark Matter is NOT natural (proton..)



The Vectorial Strongly Interacting Massive Particle 
(VSIMP) ensures:



The Vectorial Strongly Interacting Massive Particle 
(VSIMP) ensures:

1) The natural stability of the candidates through its 
vectorial symmetry structure



The Vectorial Strongly Interacting Massive Particle 
(VSIMP) ensures:

1) The natural stability of the candidates through its 
vectorial symmetry structure

2) The right amount of density through the 3 -> process 
present by construction



The Vectorial Strongly Interacting Massive Particle 
(VSIMP) ensures:

1) The natural stability of the candidates through its 
vectorial symmetry structure

2) The right amount of density through the 3 -> process 
present by construction

3) No conflict with direct detection experiments through 
its sequestered nature



The Vectorial Strongly Interacting Massive Particle 
(VSIMP) ensures:

1) The natural stability of the candidates through its 
vectorial symmetry structure

2) The right amount of density through the 3 -> process 
present by construction

4) A clear signature through self interaction observations

3) No conflict with direct detection experiments through 
its sequestered nature



Beslides



H^2 = \left( \frac{\dot a}{a} \right)^2 = \frac{8 \pi G}{3} \rho_{rad}(T) = \frac{8 \pi G}{3} \frac{\pi^2}{15} T^4
\\
aT = \mathrm{cste} ~~~~ \Rightarrow ~~~~ \frac{da}{a} = - \frac{dT}{T} 
\\
\frac{dT}{T^3}= -\sqrt{\frac{8 \pi^3 G}{45}} dt ~~~~\Rightarrow ~~~~ t = \frac{M_{PL}}{T^2}\sqrt{\frac{45}{32 
\pi^3}} \simeq 0.2 \frac{M_{PL}}{T^2}
\\
t \simeq 3 \times 10^{27}~\mathrm{GeV^{-1}} \sim 200 ~\mathrm{seconds}
\\
n(t_D) \sigma v ~ t_D \simeq 1 ~~~~\Rightarrow n(t_D) \simeq \frac{1}{\sigma v t_D}
\\
v = \sqrt{\frac{3 T_D}{m_p}}\times c \simeq 5 \times 10^8 ~\mathrm{cm ~s^{-1}}
\\
T^{now} = \left(\frac{\rho_m^{now}}{\rho_m(10^9~\mathrm{K})}\right)^{1/3} 10^9~\mathrm{K} = \left( \frac{10^{-30}}
{1.78 \times 10^{-6}~\mathrm{g/cm^3}} \right)^{1/3}10^9~\mathrm{K} \simeq 8 ~\mathrm{K}

\psi_\mu \sim i \sqrt{\frac{2}{3}}\frac{1}{m_{3/2}}\partial_\mu \psi

H = h e^{i \frac{\theta}{<H>}} ~~\Rightarrow ~~ W_\mu = i \frac{1}{<H>} \partial_\mu \theta

\mathrm{with}~~ m_{3/2} = \frac{<F>}{\sqrt{3}M_{Pl}}

{\cal L} = \frac{i m_{\tilde G}}{8 \sqrt{6}~ m_{3/2} ~ M_{Pl}} {\color{yellow} \bar\psi} ~  [\gamma_\mu, \gamma_\nu] 
{\color{red} \tilde G} ~ {\color{green} G_{\mu \nu}}

\Omega_{3/2} h^2 \sim 0.3 \left( \frac{1 ~\mathrm{GeV}}{m_{3/2}} \right) \left( \frac{T_{\mathrm{RH}}}{10^{10}~
\mathrm{GeV}} \right) \sum
\left( \frac{m_{\tilde G}}{100~\mathrm{GeV}} \right)^2

\Omega_{3/2} h^2 = {\color{yellow} \Omega_{3/2}^{scat} h^2 } + {\color{red}\Omega_{3/2}^{decay} h^2} ~~ \propto~~ 
{\color{yellow} \frac{T_{RH}\sum  m_{\tilde G^2}}{m_{3/2}^2 M_{Pl}}} +{\color{red} \frac{ \sum M^3_{\tilde Q}}
{m^2_{3/2} M_{Pl}} }



The equations
n_{e^-} + n_{e^+} = n_{\nu} + n_{\bar \nu} = \frac{3}{2} n_{\gamma} 

n_{e^-} + n_{e^+} = 0 ~ ; ~~ n_{\nu} + n_{\bar \nu} = \frac{1}{2} n_{\gamma}

\frac{\ddot a}{a} = - \frac{4 \pi G}{3}  \rho ~\Rightarrow ~ q(t) = - \frac{1}{H^2} \frac{\ddot a}{a} = \frac{4 \pi 
G}{3 H^2} \rho 
\\
= \frac{1}{2} \frac{\rho}{\rho_c}= \frac{1}{2} \Omega,
 ~~~~~~ \mathrm{with} ~ H^2 = \frac{8 \pi G}{3} \rho_c

n(T_f) \langle \sigma v \rangle = H(T_f) ~~ \Rightarrow ~~\left(T_f m \right)^{3/2} e^{-m/T_f} \langle \sigma v 
\rangle < \frac{T_f^2}{M_{Pl}} ~~\Rightarrow ~~ T_f=\frac{m}{\ln{M_{Pl}}} = \frac{m}{26}

\frac{dY}{dT} = \frac{T^2}{H(T)} \langle \sigma v \rangle Y^2 ~~\Rightarrow ~~ Y(T_{now}) = \frac{1}{M_{Pl} T_f 
\langle \sigma v \rangle } = \frac{26}{M_{Pl} m \langle \sigma v \rangle } 

\Omega = \frac{\rho}{\rho_c} = \frac{n \times m}{\rho_c} = \frac{Y \times n_\gamma \times m}{\rho_c} = \frac{26 
\times 400~\mathrm{cm^{-3}}}{\rho_c M_{Pl} \langle \sigma v \rangle} < 1
~~~~~~~~
\Rightarrow \langle \sigma v \rangle > 10^{-9} h^{-2} ~\mathrm{GeV^{-2}}

\langle \sigma v \rangle \simeq G_F^2 m^2 > 10^{-9} ~\mathrm{GeV^{-2}} ~~\Rightarrow ~~ m > 2 ~\mathrm{GeV} 

\frac{dY_{a}}{dx_s} =\left( \frac{45}{g_* \pi} \right)^{3/2} \frac{1}{4 \pi^2} \frac{M_P}{m_{a}^5}x_s^4 R

{\color{white} \chi^0_1=} {\color{red} c_B \tilde B + c_1 \tilde H_1 + c_2 \tilde H_2} {\color{yellow} + c_W \tilde 
W}



The equations

Y_{\tilde G} = \frac{n_{\tilde G}}{n_\gamma} \simeq 10^{-8} \left( \frac{m_{3/2}}{1 ~
\mathrm{GeV}} \right) 


