

Where do we stand with Higgs couplings

FKPPL Strasbourg, 10 May 2017

Project BEYONDSM

with Seongchan Park (Yonsei University, Seoul)

Status report

- SM has been shamelessly successful in describing all collider and lowenergy experiments. Discovery of 125 GeV Higgs boson is the last piece of puzzle that falls into place. There is no more free unknown parameters in the SM
- We know physics beyond SM exists (neutrino masses, dark matter, inflation, baryon asymmetry). There are also some theoretical hints for new physics (strong CP problem, flavor hierarchies, gauge coupling unifications). Unfortunately, none of these issues points unambiguously to a concrete mass scale where new physics addressing the above mentioned problems should become manifest...
- In the past, the concept of naturalness was used as a guiding principle. Models addressing naturalness problem (supersymmetry, composite Higgs, ...) make very definite predictions about new particles and interactions that should become visible below 1 TeV energy scale. But all realistic models addressing naturalness have certain tensions and involve baroque theoretical constructions, which casts serious doubts on whether they are relevant in our reality

Lord Kelvin's nightmare

- It is likely that for some time (maybe a few decades, maybe longer) we won't be able to directly produce on-shell particles from beyond the SM
- However, quantum mechanics comes to a rescue as all existing particle are continuously produced and annihilated off-shell, and this way they may the affect the properties and interactions of the known SM particles
- Therefore, in the near future of particle physics should be focused on precision measurements
- For this we need a versatile and general formalism, which can accommodate many different ways new physics may show up in experiment and indicate promising research directions

SM EFT

- Assume that the SM degrees of freedom is all there is at the weak scale. But we treat the SM as an effective theory, and call it the SM EFT
- In the SM EFT, the SM Lagrangian is treated as the lowest order approximation of the dynamics. Effects of heavy particles are encoded in new contact interactions of the SM fields in the Lagrangian
- The SM EFT Lagrangian can be defined as an expansion in the inverse mass scale of heavy particles, which coincides with the expansion in operator dimensions
- Output Control of the second secon

SM EFT Approach to BSM

Basic assumptions

 Much as in SM, relativistic QFT with linearly realized SU(3)xSU(2)xU(1) local symmetry spontaneously broken by VEV of Higgs doublet field

SM EFT Lagrangian expanded in inverse powers of

 Λ , equivalently in operator dimension D

$$H \to LH, \qquad L \in SU(2)_L$$

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \dots \\ v + h(x) + \dots \end{array} \right)$$

 $v \ll \Lambda \ll \Lambda_L$

$$\mathcal{L}_{\text{SM EFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_L} \mathcal{L}^{D=5} + \frac{1}{\Lambda^2} \mathcal{L}^{D=6} + \frac{1}{\Lambda_T^3} \mathcal{L}^{D=7} + \frac{1}{\Lambda^4} \mathcal{L}^{P=8} + \dots$$

By assumption, subleading to D=6

Lepton number or B-L violating, hence too small to probed at present and near-future colliders

Generated by integrating out heavy particles with mass scale Λ In large class of BSM models that conserve B-L, D=6 operators capture leading effects of new physics on collider observables at E << Λ

Buchmuller,Wyler (1986)

Warsaw basis for B-conserving D=6 operators

Bosonic CP-even		Bosonic CP-odd	Yukawa
O_H	$(H^{\dagger}H)^3$		$= \begin{bmatrix} O_{eH}^{\dagger} \\ IJ \end{bmatrix} = \begin{bmatrix} H^{\dagger} H e_{I}^{\dagger} \\ H^{\dagger} H u_{I}^{c} \\ \tilde{H}^{\dagger} q_{J} \\ I = \begin{bmatrix} O_{uH}^{\dagger} \\ IJ \end{bmatrix} = \begin{bmatrix} H^{\dagger} H u_{I}^{c} \\ \tilde{H}^{\dagger} q_{J} \\ I = \begin{bmatrix} O_{uH}^{\dagger} \\ IJ \end{bmatrix} = \begin{bmatrix} I \\ IJ \end{bmatrix} = \begin{bmatrix} IJ \\ IJ \end{bmatrix} = \begin{bmatrix} $
$O_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$		$[O_{dH}]_{IJ} \mid H \mid H d_I^c H \mid q_J$
O_{HD}	$\left H^{\dagger}D_{\mu}H \right ^{2}$		Vertex Dipole
O_{HG}	$H^{\dagger}HG^{a}_{\mu u}G^{a}_{\mu u}$	$O_{H\widetilde{G}} = H^{\dagger}H \widetilde{G}^{a}_{\mu\nu}G^{a}_{\mu\nu}$	$\begin{bmatrix} [O_{H\ell}^{(1)}]_{IJ} & i\ell_{I}\bar{\sigma}_{\mu}\ell_{J}H^{\dagger}D_{\mu}H & [O_{eW}^{\dagger}]_{IJ} & e_{I}^{c}\sigma_{\mu\nu}H^{\dagger}\sigma^{i}\ell_{J}W_{\mu\nu}^{i} \\ [O_{H\ell\ell}^{(3)}]_{IJ} & i\bar{\ell}_{I}\sigma^{i}\bar{\sigma}_{\mu}\ell_{J}H^{\dagger}\sigma^{i}\overleftarrow{D_{\mu}}H & [O_{eB}^{\dagger}]_{IJ} & e_{I}^{c}\sigma_{\mu\nu}H^{\dagger}\ell_{J}B_{\mu\nu} \end{bmatrix}$
O_{HW}	$H^{\dagger}H W^i_{\mu u} W^i_{\mu u}$	$O_{H\widetilde{W}} H^{\dagger}H \widetilde{W}^{i}_{\mu\nu} W^{i}_{\mu\nu}$	$\begin{bmatrix} O_{He} \end{bmatrix}_{IJ} \qquad i e_I^c \sigma_\mu \bar{e}_J^c H^\dagger \overleftrightarrow{D_\mu} H \qquad \begin{bmatrix} O_{uG}^\dagger \end{bmatrix}_{IJ} \qquad u_I^c \sigma_{\mu\nu} T^a \widetilde{H}^\dagger q_J G_{\mu\nu}^a$ $\begin{bmatrix} O^{(1)} \end{bmatrix}_{IJ} \qquad i \bar{a}_I \bar{a}_I \bar{a}_I = U_{\mu\nu}^c T^a \tilde{H}^\dagger q_J G_{\mu\nu}^a$
O_{HB}	$H^{\dagger}H B_{\mu u}B_{\mu u}$	$O_{H\widetilde{B}}$ $H^{\dagger}H\widetilde{B}_{\mu\nu}B_{\mu\nu}$	$\begin{bmatrix} O_{Hq} \\ IJ \end{bmatrix} \begin{bmatrix} iq_I \sigma_{\mu} q_J H^{\dagger} D_{\mu} H \\ i\bar{q}_I \sigma^i \bar{\sigma}_{\mu} q_J H^{\dagger} \sigma^i \overleftrightarrow{D_{\mu}} H \\ \end{bmatrix} \begin{bmatrix} O_{uW}^{\dagger} \\ IJ \end{bmatrix} \begin{bmatrix} u_I \sigma_{\mu\nu} H^{\dagger} \sigma_{\mu\nu} H^{\dagger} \\ u_I^c \sigma_{\mu\nu} H^{\dagger} q_J B_{\mu\nu} \end{bmatrix}$
O_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B_{\mu\nu}$	$O_{H\widetilde{W}B} \mid H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B_{\mu\nu}$	$[O_{Hu}]_{IJ} = \begin{bmatrix} i u_I^c \sigma_\mu \bar{u}_J^c H^\dagger \overleftrightarrow{D_\mu} H & [O_{dG}^\dagger]_{IJ} \\ i d_I^c \sigma_\mu \bar{d}_I^c H^\dagger \overleftrightarrow{D_\mu} H & [O_{dW}^\dagger]_{IJ} \end{bmatrix} \begin{bmatrix} d_I^c \sigma_{\mu\nu} T^a H^\dagger q_J G_{\mu\nu}^a \\ d_I^c \sigma_{\mu\nu} \bar{H}^\dagger \sigma^i q_J W_{\mu\nu}^i \end{bmatrix}$
O_W	$\epsilon^{ijk}W^i_{\mu u}W^j_{ u ho}W^k_{ ho\mu}$	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$[O_{Hud}]_{IJ} = \begin{bmatrix} i u_I^c \sigma_\mu \bar{d}_J^c \tilde{H}^\dagger D_\mu H & [O_{dB}^\dagger]_{IJ} \end{bmatrix} \begin{bmatrix} i d_I^c \sigma_{\mu\nu} H^\dagger q_J B_{\mu\nu} \\ d_I^c \sigma_{\mu\nu} H^\dagger q_J B_{\mu\nu} \end{bmatrix}$
O_G	$\int f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu} \qquad \sum$	$\begin{array}{c c} \bullet & O_{\widetilde{G}} & f^{abc} \widetilde{G}^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu} \end{array}$	1 /
	$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$	$H - \frac{1}{2} \left(\begin{array}{cc} \cdots \end{array} \right)$
	$O_{ee} \qquad \eta(e^c \sigma_\mu \bar{e}^c)(e^c \sigma_\mu \bar{e}^c)$	$O_{\ell e} \qquad (\bar{\ell}\bar{\sigma}_{\mu}\ell)(e^{c}\sigma_{\mu}\bar{e}^{c})$	$\frac{11}{2} - \sqrt{3} \sqrt{n + h(r)} + \sqrt{3}$
	$O_{uu} = \eta(u^c \sigma_\mu \bar{u}^c)(u^c \sigma_\mu \bar{u}^c)$	$O_{\ell u} = (\bar{\ell} \bar{\sigma}_{\mu} \ell) (u^c \sigma_{\mu} \bar{u}^c)$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
	$O_{dd} = \eta (d^c \sigma_\mu \bar{d}^c) (d^c \sigma_\mu \bar{d}^c)$	$O_{\ell d} = (\bar{\ell} \bar{\sigma}_{\mu} \ell) (d^c \sigma_{\mu} \bar{d}^c)$	
	O_{eu} $(e^c \sigma_\mu \bar{e}^c)(u^c \sigma_\mu \bar{u}^c)$	O_{eq} $(e^c \sigma_\mu \bar{e}^c)(\bar{q}\bar{\sigma}_\mu q)$	
	O_{ed} $(e^c \sigma_\mu \bar{e}^c) (d^c \sigma_\mu \bar{d}^c)$	$O_{qu} = (\bar{q}\bar{\sigma}_{\mu}q)(u^c\sigma_{\mu}\bar{u}^c)$	
	$O_{ud} = (u^c \sigma_\mu \bar{u}^c) (d^c \sigma_\mu \bar{d}^c)$	$O_{qu}' \mid (\bar{q}\bar{\sigma}_{\mu}T^aq)(u^c\sigma_{\mu}T^a\bar{u}^c)$	
	$O'_{ud} \mid (u^c \sigma_\mu T^a \bar{u}^c) (d^c \sigma_\mu T^a \bar{d}^c)$	$O_{qd} = (\bar{q}\bar{\sigma}_{\mu}q)(d^c\sigma_{\mu}\bar{d}^c)$	
		$O_{qd}' \mid (\bar{q}\bar{\sigma}_{\mu}T^aq)(d^c\sigma_{\mu}T^a\bar{d}^c)$	
	$(\bar{L}L)(\bar{L}L)$	$(\bar{L}R)(\bar{L}R)$	
	$O_{\ell\ell} = \eta(\bar{\ell}\bar{\sigma}_{\mu}\ell)(\bar{\ell}\bar{\sigma}_{\mu}\ell)$	O_{quqd} $(u^c q^j) \epsilon_{jk} (d^c q^k)$	
	$O_{qq} \left[\eta(\bar{q}\bar{\sigma}_{\mu}q)(\bar{q}\bar{\sigma}_{\mu}q) \right]$	$O'_{quqd} \left[(u^c T^a q^j) \epsilon_{jk} (d^c T^a q^k) \right]$	
	$O_{qq}' \mid \eta(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)$	$O_{\ell equ} = (e^c \ell^j) \epsilon_{jk} (u^c q^k)$	
	$O_{\ell q} = (\bar{\ell}\bar{\sigma}_{\mu}\ell)(\bar{q}\bar{\sigma}_{\mu}q)$	$O'_{\ell equ} \left (e^c \bar{\sigma}_{\mu\nu} \ell^j) \epsilon_{jk} (u^c \bar{\sigma}^{\mu\nu} q^k) \right.$	Grzadkowski et al.
	$O'_{\ell q} \mid (\bar{\ell} \bar{\sigma}_{\mu} \sigma^i \ell) (\bar{q} \bar{\sigma}_{\mu} \sigma^i q)$	$O_{\ell e d q} \qquad (\bar{\ell} \bar{e}^c)(d^c q)$	<u>1008.4884</u>

SM EFT with dimension-6 operators

Scope of LHC Higgs searches

- Accuracy of LHC Higgs measurements is inferior, compared e.g. to that of LEP-1 Z-pole observables, so for generic new physics scenarios they will not provide the strongest constraints
- However, the value of Higgs observables is that they give access to some completely unexplored directions in the parameter space of SM EFT
- One can concisely characterize these unconstrained directions that should be explored at the LHC
- There do exist (not fine-tuned) new physics scenarios where only the operators along these particular directions are generated with sizable coefficients in the low-energy effective theory

Scope of LHC Higgs searches

Effects of SM EFT D=6 operators on Higgs couplings

$$\mathcal{L} \supset rac{m_h^2}{2v} \left(1 + \delta \lambda_3
ight) h^3$$

- Corrections to SM Higgs couplings to 2 SM fields and new tensor structures of these interactions
- Higgs couplings to 3 or more SM particles affecting multibody Higgs decays

$$\begin{aligned} \mathcal{L}_{\text{hvv}} &= \frac{h}{v} [2(1+\delta c_w) m_W^2 W_{\mu}^+ W_{\mu}^- + (1+\delta c_z) m_Z^2 Z_{\mu} Z_{\mu} \\ &+ c_{ww} \frac{g_L^2}{2} W_{\mu\nu}^+ W_{\mu\nu}^- + \tilde{c}_{ww} \frac{g_L^2}{2} W_{\mu\nu}^+ \tilde{W}_{\mu\nu}^- + c_{w\Box} g_L^2 \left(W_{\mu}^- \partial_{\nu} W_{\mu\nu}^+ + \text{h.c.} \right) \\ &+ c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a G_{\mu\nu}^a + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{z\gamma} \frac{eg_L}{2c_{\theta}} Z_{\mu\nu} A_{\mu\nu} + c_{zz} \frac{g_L^2}{4c_{\theta}^2} Z_{\mu\nu} Z_{\mu\nu} \\ &+ c_{z\Box} g_L^2 Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma\Box} g_L g_Y Z_{\mu} \partial_{\nu} A_{\mu\nu} \\ &+ \tilde{c}_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a + \tilde{c}_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{z\gamma} \frac{eg_L}{2c_{\theta}} Z_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{zz} \frac{g_L^2}{4c_{\theta}^2} Z_{\mu\nu} \tilde{Z}_{\mu\nu} \end{aligned}$$

$$\mathcal{L}_{\mathrm{hff}} = -\frac{h}{v} \sum_{f=u,d,e} m_f f^c (I + \delta y_f e^{i\phi_f}) f + \mathrm{h.c.}$$

$$\begin{aligned} \mathcal{L}_{h,\text{EFT}} \supset & \frac{h}{v} \sqrt{g_L^2 + g_Y^2} \left[\delta g_L^{Ze} Z_\mu \bar{e}_L \gamma_\mu e_L + \delta g_R^{Ze} Z_\mu \bar{e}_R \gamma_\mu e_R + \dots \right] \\ &+ \frac{h}{v^2} \left[(d_{Ae} A_{\mu\nu} \bar{e}_L \sigma_{\mu\nu} e_R + \text{h.c.}) + (d_{Ze} Z_{\mu\nu} \bar{e}_L \sigma_{\mu\nu} e_R + \text{h.c.}) + \dots \right] \end{aligned}$$

LHC Higgs signal strength so far

Channel	Production	Run-1	ATLAS Run-2	CMS Run-2
$\gamma\gamma$	ggh	$1.10^{+0.23}_{-0.22}$	$0.62^{+0.30}_{-0.29}$ [106]	$0.77^{+0.25}_{-0.23}$ [107]
	VBF	$1.3^{+0.5}_{-0.5}$	$2.25^{+0.75}_{-0.75}$ [106]	$1.61^{+0.90}_{-0.80}$ [107]
	Wh	$0.5^{+1.3}_{-1.2}$	-	-
	Zh	$0.5^{+3.0}_{-2.5}$	-	-
	Vh	_	$0.30^{+1.21}_{-1.12}$ [106]	-
	$t\bar{t}h$	$2.2^{+1.6}_{-1.3}$	$-0.22^{+1.26}_{-0.99}$ [106]	$1.9^{+1.5}_{-1.2}$ [107]
$Z\gamma$	incl.	$1.4^{+3.3}_{-3.2}$	-	-
ZZ^*	ggh	$1.13_{-0.31}^{+0.34}$	$1.34^{+0.39}_{-0.33}$ [106]	$0.96^{+0.40}_{-0.33}$ [108]
	VBF	$0.1^{+1.1}_{-0.6}$	$3.8^{+2.8}_{-2.2}$ [106]	$0.67^{+1.61}_{-0.67}$ [108]
	cats.	-	-	$1.05^{+0.19}_{-0.17}$ [?]
WW^*	ggh	$0.84_{-0.17}^{+0.17}$	-	_
	VBF	$1.2^{+0.4}_{-0.4}$	$1.7^{+1.1}_{-0.9}$ [109]	-
	Wh	$1.6^{+1.2}_{-1.0}$	$3.2^{+4.4}_{-4.2}$ [109]	-
	Zh	$5.9^{+2.6}_{-2.2}$	-	-
	$t\bar{t}h$	$5.0^{+1.8}_{-1.7}$	-	-
	incl.	-	-	0.3 ± 0.5 [110]
$\tau^+\tau^-$	ggh	$1.0\substack{+0.6 \\ -0.6}$	-	-
	VBF	$1.3_{-0.4}^{+0.4}$	-	-
	Wh	$-1.4^{+1.4}_{-1.4}$	-	-
	Zh	$2.2^{+2.2}_{-1.8}$	_	
	$t \overline{t} h$	$-1.9^{+3.7}_{-3.3}$	_	$0.72^{+0.62}_{-0.53}$
$b\overline{b}$	VBF	-	$-3.9^{+2.8}_{-2.9}$ [111]	$-3.7^{+2.4}_{-2.5}$ [112]
	Wh	$1.0^{+0.5}_{-0.5}$	_	-
	Zh	$0.4^{+0.4}_{-0.4}$	_	-
	Vh	-	$0.21^{+0.51}_{-0.50}$ [113]	-
	$t\bar{t}h$	$1.15_{-0.94}^{+0.99}$	$2.1^{+1.0}_{-0.9}$ [114]	$-0.19^{+0.80}_{-0.81}$ [115]
$\mu^+\mu^-$	incl.	$0.1^{+2.5}_{-2.5}$	$(-0.1^{+1.5}_{-1.5}$?)	
multi- ℓ	cats.	-	$2.5^{+1.3}_{-1.1}$ [117]	$1.5^{+0.5}_{-0.5}$ [?]

Run-2 results scavenged from various conf-notes

Run-1 results

from ATLAS+CMS

1606.02266

Not using any input

from differential

distributions here

D=6 EFT parameters probed by LHC Higgs searches

- Combinations of EFT parameters constrained by precision tests much better than at O(10%) are not relevant at the LHC, given current precision
- Assuming MFV, one can identify 16 combinations of EFT parameters that are weakly or not at all constrained by precision tests, and which affect LHC Higgs observables at leading order. These correspond to 16 Higgs basis parameters in previous slide.
- Higgs signal strength observables at $O(1/\Lambda^2)$ are only sensitive to CP-even parameters (CP-odd ones enter only quadratically and are ignored one needs to study differential distributions to access those at $O(1/\Lambda^2)$).
- © Currently not much experimental sensitivity to modifications of Higgs cubic self-interactions, thus parameter $\delta\lambda$ 3 cannot be reasonably constrained

Di Vita et al 1704.01953

Thus, assuming MFV couplings to fermions, only 9 EFT parameters affect Higgs signal strength measured at LHC

Corrections to Higgs production from dimension-6 operators

$$\frac{\sigma_{ggh}}{\sigma_{ggh}^{SM}} \simeq 1 + 237c_{gg} + 2.06\delta y_{\mu} - 0.06\delta y_{d}.$$

$$\frac{\sigma_{r}y_{H}}{\sigma_{ggh}^{SM}} \simeq 1 + 237c_{gg} + 2.06\delta y_{\mu} - 0.06\delta y_{d}.$$

$$\frac{\sigma_{r}y_{H}}{\sigma_{ggh}^{SM}} \simeq 1 + 237c_{gg} + 2.06\delta y_{\mu} - 0.06\delta y_{d}.$$

$$\frac{\sigma_{r}y_{H}}{\sigma_{ggh}^{SM}} \simeq 1 + 237c_{gg} + 2.06\delta y_{\mu} - 0.06\delta y_{d}.$$

$$\frac{\sigma_{r}y_{H}}{\sigma_{ggh}^{SM}} \simeq 1 + 2\delta c_{w} + \begin{pmatrix} 6.39\\ 6.36\\ 6.36\\ 0.40 \end{pmatrix} c_{w} + \begin{pmatrix} 1.49\\ 1.59\\ 0.40 \end{pmatrix} c_{ww} + \begin{pmatrix} 0.42\\ 0.42\\ 0.43 \end{pmatrix} c_{gw} + \begin{pmatrix} 0.42\\ 0.43\\ 0.43 \end{pmatrix} c_{gw} + 0.12c_{gg} - 0.38c_{gg} + 0.12c_{gg}.$$

$$\frac{\sigma_{r}y_{H}}{\sigma_{ggh}^{SM}} \simeq 1 + 2\delta c_{w} + \begin{pmatrix} 6.39\\ 6.36\\ 6.36\\ 0.46 \end{pmatrix} c_{w} + \begin{pmatrix} 1.49\\ 1.49\\ 1.59 \end{pmatrix} c_{ww} + \begin{pmatrix} 0.43\\ 0.43\\ 0.43 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.43\\ 0.43\\ 0.43 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.43\\ 0.43\\ 0.43 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.43\\ 0.43\\ 0.43 \end{pmatrix} c_{gg} + 1 + 2\delta c_{gg} + \begin{pmatrix} 5.30\\ 5.40\\ 5.72 \end{pmatrix} c_{gg} + \begin{pmatrix} 1.29\\ 1.40\\ 1.59 \end{pmatrix} c_{wg} + \begin{pmatrix} 0.22\\ 0.22\\ 0.22 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} \simeq 1 + 2\delta c_{g} + \begin{pmatrix} 7.61\\ 7.77\\ 8.24 \end{pmatrix} c_{gg} + \begin{pmatrix} 3.33\\ 3.47 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.58\\ 0.65 \end{pmatrix} c_{gg} + \begin{pmatrix} 0.27\\ 0.22\\ 0.22 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} \simeq 1 + 2\delta c_{gg} + \begin{pmatrix} 7.67\\ 7.77\\ 8.24 \end{pmatrix} c_{gg} + \begin{pmatrix} 3.33\\ 3.47 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.58\\ 0.65 \end{pmatrix} c_{gg} + \begin{pmatrix} 0.27\\ 0.22 \\ 0.30 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} \simeq 1 + 2\delta c_{gg} + \begin{pmatrix} 7.67\\ 7.77\\ 8.24 \end{pmatrix} c_{gg} + \begin{pmatrix} 3.33\\ 3.47 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.58\\ 0.65 \end{pmatrix} c_{gg} + \begin{pmatrix} 0.27\\ 0.22 \\ 0.30 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} \simeq 1 + 2\delta c_{gg} + \begin{pmatrix} 7.67\\ 7.77\\ 8.24 \end{pmatrix} c_{gg} + \begin{pmatrix} 3.33\\ 3.47 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.58\\ 0.65 \end{pmatrix} c_{gg} + \begin{pmatrix} 0.27\\ 0.22 \\ 0.30 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} \simeq 1 + 2\delta c_{gg} + \begin{pmatrix} 7.67\\ 7.77\\ 8.24 \end{pmatrix} c_{gg} + \begin{pmatrix} 3.33\\ 3.47 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.58\\ 0.65 \end{pmatrix} c_{gg} + \begin{pmatrix} 0.27\\ 0.22 \\ 0.30 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} \simeq 1 + 2\delta c_{gg} + \begin{pmatrix} 7.67\\ 7.77\\ 8.24 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.58\\ 0.65 \end{pmatrix} c_{gg} + \begin{pmatrix} 0.27\\ 0.22 \\ 0.30 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} \simeq 1 + 2\delta c_{gg} + \begin{pmatrix} 7.67\\ 7.77\\ 7.77 \end{pmatrix} c_{gg} + \begin{pmatrix} 3.33\\ 3.77 \end{pmatrix} c_{gg} - \begin{pmatrix} 0.58\\ 0.65 \end{pmatrix} c_{gg} + \begin{pmatrix} 0.27\\ 0.30 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} = \begin{pmatrix} 0.27\\ 0.22 \\ 0.22 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} = \begin{pmatrix} 0.27\\ 0.22 \\ 0.22 \end{pmatrix} c_{gg},$$

$$\frac{\sigma_{r}y_{h}}{\sigma_{r}y_{h}} = \begin{pmatrix} 0.27\\$$

Corrections to Higgs decays from dimension-6 operators

Decays to 2 fermions

Global constraints on Higgs coupling in SM EFT

Combined constraints from LHC Higgs and electroweak precision constraints

Correlation

matrix

available

$$\mathcal{L}_{\text{hvv}} = \frac{h}{v} [2(1 + \delta c_w) m_W^2 W_{\mu}^+ W_{\mu}^- + (1 + \delta c_z) m_Z^2 Z_{\mu} Z_{\mu} \\ + c_{ww} \frac{g_L^2}{2} W_{\mu\nu}^+ W_{\mu\nu}^- + \tilde{c}_{ww} \frac{g_L^2}{2} W_{\mu\nu}^+ \tilde{W}_{\mu\nu}^- + c_{w\Box} g_L^2 (W_{\mu}^- \partial_{\nu} W_{\mu\nu}^+ + \text{h.c.}) \\ + c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a G_{\mu\nu}^a + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{z\gamma} \frac{eg_L}{2c_\theta} Z_{\mu\nu} A_{\mu\nu} + c_{zz} \frac{g_L^2}{4c_\theta^2} Z_{\mu\nu} Z_{\mu\nu} \\ + \tilde{c}_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a + \tilde{c}_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{z\gamma} \frac{eg_L}{2c_\theta} Z_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{zz} \frac{g_L^2}{4c_\theta^2} Z_{\mu\nu} \tilde{Z}_{\mu\nu} \\ + \tilde{c}_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a + \tilde{c}_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{z\gamma} \frac{eg_L}{2c_\theta} Z_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{zz} \frac{g_L^2}{4c_\theta^2} Z_{\mu\nu} \tilde{Z}_{\mu\nu} \\ \mathcal{L}_{\text{hff}} = -\frac{h}{v} \sum_{f=u,d,e} m_f f^c (I + \delta y_f e^{i\phi_f}) f + \text{h.c.} \\ \mathcal{L}_{\text{tgc}} = ie [(W_{\mu\nu}^+ W_{\mu}^- - W_{\mu\nu}^- W_{\mu}^+) A_{\nu} + (1 + \delta \kappa_\gamma) A_{\mu\nu} W_{\mu}^+ V_{\nu}^- + \tilde{\kappa}_{\gamma} \tilde{A}_{\mu\nu} W_{\mu}^+ W_{\nu}^-] \\ + i \frac{e}{m_{0\nu}^2} \lambda_\gamma W_{\mu\nu}^+ W_{-\rho}^- A_{\rho\mu} + i \frac{g_{L^2}}{m_{0\nu}^2} \lambda_z W_{\mu\nu}^+ W_{-\rho}^- \tilde{A}_{\rho\mu} + i \frac{g_{L^2}}{m_{0\nu}^2} \tilde{\lambda}_z W_{\mu}^+ W_{\nu}^- \tilde{\lambda}_{\rho}^- \tilde{\lambda}_z W_{\mu\nu}^+ W_{\nu}^- \tilde{\lambda}_{\rho}^- \lambda_z W_{\mu\nu}^+ W_{\mu\nu}^- \tilde{\lambda}_{\rho}^- \lambda_z W_{\mu\nu}^- \tilde{\lambda}_{\rho}$$

Overall SM is very good (too good?) fit, no evidence or even hint of D=6 operators

- Some tension in global fit due to deficit in the bb decay, but mostly gone after Moriond
- Decrease in bb needs to be compensated by negative contributions to Higgs-gluon couplings, to avoid overshooting γγ, WW, and ZZ channels

What's in store

- More Higgs signal strength results coming. Especially WW and bb measurements should have important impact on the fits
- ATLAS + CMS combination with correlations
- Additional constraints from Higgs differential distributions that should help disentangle different tensor structures of Higgs coupling to VV and access CP violating operators
- Constraints from high-energy tails of differential distributions where higher energy of the LHC trumps its inferior accuracy

Take Away

- Several theoretical frameworks to describe possible deformations of Higgs coupling from SM predictions, among which SM EFT is preferred by most theorists
- Accuracy of LHC Higgs measurements is rather unimpressive as only dimension-6 operators suppressed by scales smaller than ~1 TeV can be probed. Still, for strongly coupled UV completions this gives access to new physics at ~10 TeV, beyond the direct reach of the LHC
- The importance of Higgs observables is that they constraint certain linear combinations of dimension-6 operators that cannot be accessed by any other means
- One should stress the importance of global fits, where all (unconstrained) dimension-6 operators are assumed to be present, as only these lead to model-independent and convention-independent constraints that can be applied to a large class of BSM scenarios
- Current theory-level analyses meaningfully probe 9 of these linear combinations. No serious hints for the presence of any of these operators exist in the latest data, with previous hints driven by tth and h->bb going away