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✓Since 2015, our activity has been integrated in a more global framework of Belle 
II collaboration (B2TiP): the members of TYL played he central role of B2TiP. 
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REPORT PLANNING
Phase 1(2014)

• Identifying the ‘Golden 
channels’

Phase II (2015)
• Detailed studies (theory 

uncertainties, experimental 
simulations) 

• New ideas???
Phase III (2016) 

• Finalizing the analysis/text
• Editing

Krakow workshop (~100 participants)

11/15
NP-WG

PNNL workshop

03/15
NP-WG

LAL workshop

B2TiP
B2TiP is the official Belle II physics working group. During 2014-2017, 

we held 4 workshops. Current members will continue until 2019.
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1. Introduction
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Section
author
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2

1.1.
Introduc

tion

3

The physics goals of Belle II, as a next generation
flavour factory

, are to search
for new

4

physics (NP) in the flavour sector
at the precisio

n frontier, and to further reveal
the nature 5

of QCD in describing matter.
The SuperKEKB facility

is designed to collide electro
ns and 6

positron
s at centre-of-

mass energies
in the region

s of the Υ resonances. Most of the data
7

will be collect
ed at the Υ (4S) resonance, which is just above threshold for B-meson pair

8

production where no fragmentation
particle

s are produced. The acceler
ator is designed with

9

asymmetric beam energies
to provide a boost to the centre-of-

mass system and thereby 10

allow for time-dependent charge-p
arity (CP ) symmetry violatio

n measurements. The boost 11

is slightly less than that at KEKB, which is advantageou
s for analyses with neutrinos in the 12

final state that require good detector
hermeticity.

SuperKEKB has a design luminosity of 13

8× 103
5 cm

−2 s−1 , about 40 times larger
that of KEKB. This luminosity will produce a total

14

of 5× 101
0 b, c and τ pairs over a period of 8 years.

The first data taking run for physics
15

analyses is anticipated to begin in 2017.

16

The Standard Model (SM) is, at the current level of experimental precisio
n and at the 17

energies
reached so far, is the best tested

theory. Despite its tremendous success in describ- 18

ing the fundamental particle
s and their interacti

ons, excluding gravity, it does not provide 19

answers to many fundamental questions. The SM does not explain why there should be 20

only three generation
s of elementary fermions and why there is an observed

hierarch
y in 21

the fermion masses.
The origin

of mass of fundamental particle
s is explained within the SM 22

by spontaneous electro
weak symmetry breaking, resulting in the Higgs boson. However, the 23

Higgs boson does not account for neutrino masses.
It is also not yet clear whether there 24
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TYL members contributions to B2TiP
‣ WG2: Radiative and Electroweak penguin B decays : A. Ishikawa (convener), 

M.-H. Schune, E. Kou, F. Le Diberder

‣	
WG3: Time dependent CP asymmetry : S. Mishima (convener)

‣	
WG4: phi_3 measurement : K. Trabelsi (reviewer) 

‣	
WG8: Tau physics: K. Hayasaka (convener), B. Moussallam, J. Hisano, E. Kou 

‣	
WG9: New Physics : R. Itoh (convener), Y. Sato (convener),  S. Mishima,  E. 
Kou,  M. Nojiri

WG8 : LFV τ -> μγ sensitivity to 
SUSY-GUT 

WG2 : LHCb anomaly in B->K*μμ 
vs Belle II

non-Minimal SUSY CMSSM
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Fig. 4: Exclusion contours in the CNP
9 –CNP

10 plane resulting from future inclusive b → s�+�+

measurements at Belle II. For comparison the constraints on CNP
9 and CNP

10 following from

the global fit presented in [222] is also shown.

1.4. Double-radiative decays1056

(Contributing authors: C. Bobeth and A. Kokulu)1057

1058

Bq → γγ Decays. In the SM, the branching ratios of the Bq → γγ decays scale as the1059

involved CKM elements |Vtd|2 and |Vts|2, predicting an enhancement of the Bs → γγ decay1060

over the Bd → γγ decay by a factor of |Vts/Vtd|2 � 20. Using the full data set at Υ (5S) [223],1061

Belle obtained the following 90% CL upper limit1062

Br(Bs → γγ)exp < 3.1 · 10−6 , (51)

on the branching ratio of Bs → γγ. The searches for Bd → γγ at Υ (4S) resulted instead in1063

the 90% CL upper limits1064

Br(Bd → γγ)exp <

�
3.2 · 10−7 ,

6.2 · 10−7 ,
(52)

from the full data set of BaBar [224], and a partial data set of 104 fb−1 of Belle [225] out of1065

the available 711 fb−1. The corresponding SM predictions are given by [226]1066

Br(Bs → γγ)SM ∈ [0.5, 3.7] · 10−6 ,

Br(Bd → γγ)SM ∈ [1.0, 9.8] · 10−8 ,
(53)

and are either close to or only by an order of magnitude below the bounds (51) and (52).1067

The above comparison shows that Belle II will be able to discover Bd → γγ with the antic-1068

ipated 50 times larger data set at Υ (4S). Furthermore, an appropriately large Υ (5S) data1069

set could provide an observation of Bs → γγ.1070

32/53



zoom
zoom

Future prospect of the UT triangle

zoom

If  all the central values 
a little go lower...

50ab-1 
Belle II

SM?!

2016

~2025

E.K.& F. Le Diberder 
for B2TiP working group
Results are preliminary

~2025

BSM (8σ!)

OR

!!"# ! !"# !"$ !"% !"& !"'

!"#

!"$

!"%

!"&

!"'

!"(
!!"# ! !"# !"$ !"% !"& !"'

!"#

!"$

!"%

!"&

!"'

!"(

50ab-1 
B

elle II

~2025

BSM (5σ!)

50ab-1 
B

elle II

Sum of  the angles are 180 degree 
but the side doesn’t meet!

Lattice inputs are very important 
for the sides measurements



Future prospect of the CKM UT?
• To understand this “8σ” effect better, we have run a Monte 

Carlo simulation. 

• We randomly sample the central values (1000 trials) assuming 
Gaussian measurements and compute the significance.

• What is the chance to observe a deviation < 5σ 
significance in CKM Unitarity Triangle ??zoom
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New project FLAV_02
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Common physics topics

i) the photon polarization measurement of b->sγ 
processes (with final state, K*, K1 etc, including γ->e+e- ) 

ii) the hadronic tau decays, in particular, to observe the CP 
violation in τ->Kπν channel 

iii) the CKM Φ3/γ determination via channels such as B->D
(->Kππ)K etc. 

These 3 observables are among the Golden Channels of Belle II/LHCb 
and many efforts are ongoing both theoretically and experimentally. 



New project FLAV_02

• The goal of the project :
Investigating a possible improvement in the decay amplitudes description 
(signal/background) for Belle II and LHCb observables.  
Based on the latest progresses on the lattice QCD and the hadron physics. 

• Possible outcome: 
Application of the new amplitude description to the BelleII/LHCb analysis. 
Publishing a phenomenology paper on the new amplitude description. 

• Regular video meeting (journal club style)
Experimentalists : raising questions of the analysis
Theorists : explaining the basics of the subject and the latest progress in the 
field

• Visiting Japan/France
Long term (7-10 days?) visit for collaboration
Short term visit : B2TiP meeting, Theory group seminars, TYL-FJPPL 
workshops



Theme of 2017

✴ This first year, we will focus on the overlap of the K* 
resonance and the so-called K-π s-wave contribution. 

✴ This contribution has been recognized in many 
measurements, while how to treat this “state” depends on 
modeling (no common agreement on the modeling). 

✴ The modeling dependence affects especially to the strong 
phase, which is the crucial information needed e.g. for 
determining the CP violating parameters. 



Appearance of K-π s-waveand widths are fixed at the world average values [20]. In the approximation
κ is chosen to be real, because FS is defined up to the common phase, which
cancels in |FS|2.
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Fig. 3. Comparison of the KSπ mass distributions, points are experimental
data, histograms are spectra expected for different models. (a) shows the fitted
result with the model incorporating the K∗(892) alone, here the background has
been already subtracted from both experimental and expected distributions.
(b) shows the fitted result with the K∗(892)+K∗

0 (800)+K∗(1410) model, here
different types of background are also shown.

Figure 3 (a) and Table 3 show that the K∗(892) alone is not sufficient to
describe the KSπ mass spectrum. To describe the enhancement near threshold,
we introduce a K∗

0 (800) amplitude, while for description of the distribution
at higher invariant masses we try to include the K∗(1410), K∗(1680) vector
resonances (see Table 3) or the scalar K∗

0(1430) (see Table 4). Figure 3 (b)
demonstrates the good quality of the fit with the K∗

0 (800)+K∗(892)+K∗(1410)
model. It can be seen from Tables 3, 4 that we cannot distinguish between the
K∗

0 (800) + K∗(892) + K∗(1410) and K∗
0 (800) + K∗(892) + K∗

0 (1430) models.
The fit quality with the K∗

0 (800)+K∗(892)+K∗(1680) model (see the fourth
column of Table 3) is worse than that of the K∗

0 (800) + K∗(892) + K∗(1410)
and K∗

0(800) + K∗(892) + K∗
0(1430) models.

It should be noted that the absolute value of a sum of two Breit-Wigner
functions of mass (

√
s) can have the same shape for two different sets of

parameters. In the case of the K∗
0(800) + K∗(892) + K∗

0 (1430) model the
relevant parameters are κ, |γ| and arg(γ). This statement holds true when
mass-independent widths are considered. If the width is mass-dependent, some
difference in the spectra appears. If in the fit to the data the errors are
large enough, we cannot distinguish these solutions by their χ2 values. For
high statistics the two solutions can be distinguished by a χ2 test. While

12

(see Ref. [8] for more detail):

dΓ

d
√

s
∼

1

s

(

1 −
s

m2
τ

)2(

1 + 2
s

m2
τ

)

P

{

P 2|FV |2 +
3(m2

K − m2
π)2

4s(1 + 2 s
m2

τ

)
|FS|2

}

, (2)

where s is the KSπ− invariant mass squared and P is the KS momentum in
the KSπ− rest frame:

P (s) =
1

2
√

s

√

[

s − (mK + mπ)2
][

s − (mK − mπ)2
]

. (3)

The vector form factor FV is parameterized by the K∗(892), K∗(1410) and
K∗(1680) meson amplitudes:

FV =
1

1 + β + χ

[

BWK∗(892)(s) + βBWK∗(1410)(s) + χBWK∗(1680)(s)

]

, (4)

where β and χ are complex coefficients for the fractions of the K∗(1410) and
K∗(1680) resonances, respectively. BWR(s), (R = K∗(892), K∗(1410), K∗(1680))
is a relativistic Breit-Wigner function:

BWR(s) =
M2

R

s − M2
R + i

√
sΓR(s)

, (5)

where ΓR(s) is the s-dependent total width of the resonance:

ΓR(s) = Γ0R
M2

R

s

(

P (s)

P (M2
R)

)2#+1

, (6)

where $ = 1(0) if the Kπ system originates in the P (S)-wave state and Γ0R is
the resonance width at its peak.

The scalar form factor FS includes the K∗
0 (800) and K∗

0 (1430) contributions,
their fractions are described respectively by the complex constants κ and γ:

FS = κ

s

M2
K∗

0
(800)

BWK∗

0
(800)(s) + γ

s

M2
K∗

0
(1430)

BWK∗

0
(1430)(s). (7)

The experimental distribution is approximated in the mass range from 0.63 GeV/c2

to 1.78 GeV/c2 by a function calculated from the convolution of the spectrum
given by Eq. (2) and the detector response function, which takes into account
the efficiency and finite resolution of the detector. In all fits the K∗(892) mass
and width as well as the total normalization are free parameters. Only the
strengths (fractions) of the other K∗’s are free parameters, while their masses

11

Table 5
Results of the fit of the KSπ mass spectrum in the model when the non-K∗(892)
mechanism is introduced by the LASS scalar form factor, described by the param-
eters a and b.

K∗(892)+LASS K∗(892)+LASS

a, b - fixed a, b - free

MK∗(892)− , MeV/c2 895.42 ± 0.19 895.38 ± 0.23

ΓK∗(892)− , MeV 46.46 ± 0.47 46.53 ± 0.50

λ 0.282 ± 0.011 0.298 ± 0.012

a, (GeV/c)−1 2.13 ± 0.10 10.9 ±
7.4

3.0

b, (GeV/c)−1 3.96 ± 0.31 19.0 ±
4.5

3.6

χ2/n.d.f. 196.9/86 97.3/83

P (χ2),% 10−8 13

the K∗
0(800) + K∗(892) + K∗

0 (1430) case with a complicated scalar form fac-
tor different solutions result in similar P (χ2) values (see Table 4) due to the
relatively low statistics in the region of the K∗

0 (800) and K∗
0 (1430) peaks.

An alternative way to describe our data is to use the parameterization of the
scalar form factor suggested by the LASS experiment [23,24]:

FS = λALASS(s), ALASS =

√
s

P
(sin δBeiδB + e2iδBBWK∗

0
(1430)(s)), (8)

where λ is a real constant, P is KS momentum in the KSπ rest frame (see
Eq. (3)), and the phase δB is determined from the equation cot δB = 1

aP + bP
2 ,

where a, b are the model parameters. In this parameterization the non-resonant
mechanism is given by the effective range term sin δBeiδB , while the resonant
structure is described by the K∗

0(1430) amplitude.

Table 5 shows the results of fits to the spectrum in models, where the non-
K∗(892) mechanism is described by the LASS parameterization of the scalar
form factor. In the first fit (see the second column of Table 5) a and b pa-
rameters were fixed at the LASS optimal values [24]. In the second fit a and
b were free parameters (see the third column of Table 5). The optimal values
of a and b in our fit differ significantly from the values obtained by the LASS
collaboration in experiments on Kπ scattering [23].

The K∗
0 (800) + K∗(892) + K∗(1410) model was considered as the default and

was used to obtain the K∗(892)(KSπ)ν fraction in the KSπν final state, which

14

arXiv:0706/2231: 
Belle τ->Kπν

Model dependence results in different 
strong phase. For the CP asymmetry 
measurement, the phase from the 
vector-scalar form factor is crucial.  
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FIG. 1: Dalitz plot for D+ → K−π+
A π+

B decays. The squared invariant mass sB of one K−π+ combination is plotted against
sA, the squared invariant mass of the other combination. The plot is symmetrized, each event appearing twice. Lines in both
directions indicate values equally spaced in squared effective mass at each of which the S-wave amplitude is determined by the
MIPWA described in section III. Kinematic boundaries for the Dalitz plot are drawn for three-body mass values M = 1.810
and M = 1.890 GeV/c2, between which data are selected for the fits.

III. FORMALISM

A. K−π+ Partial Wave Expansion

The Dalitz plot in Fig. 1 is described by a complex amplitude Bose-symmetrized with respect to the identical pions
π+

A
and π+

B
:

A = A(sA, sB) + A(sB , sA). (2)

Considering the simplest, tree-level quark diagrams, iso-spin I = 1/2 K−π+ systems are most likely to be produced.
The contribution of the π+π+ amplitude to these decays is not expected to be significant, coming mostly from re-
scattering processes. To test this, data are taken from measurements of π+p → π+π+n reactions [27] in which the
phase of the π+π+ amplitude was found to vary slowly, assuming it to be elastic, from zero at threshold to about
−30◦ at 1.45 GeV/c2, the upper range of the measurements. No evidence for isospin I = 2 resonances exists in this
range. This amplitude is added to those in model C in Ref. [6]. It is found that the π+π+ contribution is, indeed,
insignificantly small (0.7 ± 0.4)%.

The amplitude A is therefore written as the sum of K−π+ partial waves labelled by angular momentum quantum
number L,

A(sA, sB) =
Lmax
∑

L=0

(−2pq)LPL(cos θ) ×

FL

D(q, rD) × CL(sA), (3)

corresponding to production of K−π+ systems with spin J = L and parity (−1)L in these D+ decays. In this analysis,
the sum is truncated at Lmax = 2 since the D-wave K∗

2 (1430), as measured in reference [6], contributes only about
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C. Parametrization of the S-wave

The goal is to define the S-wave amplitude making no assumptions about either its scalar meson composition, nor
of the form of any S-wave NR terms. To this end, two real parameters are introduced

ck = |C0(sk)| ; γk = φ0(sk) (11)

to define the amplitude C0(sk) = ckeiγk at each of a set of invariant mass squared values s = sk (k = 1, Ns). A second
order spline interpolation is used to define the amplitude between these points (sk, ckeiγk) [31]. The cK and γk values
are treated as model-independent parameters, and are determined by a fit to the data.

To obtain the results in this paper, Ns = 40 equally spaced values of sk are chosen. These are indicated by the
lines drawn on the Dalitz plot in Fig. 1. Other sets of values for sk are also used to check the stability of the results
obtained.

D. Maximum Likelihood Fit

In this analysis, the 3-body mass M is not constrained to be that of the D+ meson. The fits are therefore made in
three dimensions (M, sA, sB). A normalized, log-likelihood function is defined as
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where Ps and P i
b are the normalized signal and background PDF’s, respectively.

Three backgrounds (i = 1, 2, 3), described in Sec. II, are included incoherently in Eq. (12). Each is considered to
constitute a fraction fi of the event sample in the selected range 1.850 < M < 1.890 GeV/c2, and to be described by
the PDF:
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b =
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S-wave parameterization in MIPWA

D decays are very important for 
γ/Φ3 measurement, where the 

model dependent becomes 
crucial !!!  

BW vs LASS models



Discussions on-going...

κ (Kpi S-wave) is not a usual resonance..
A strict definition is “pole in the Kπ->πK 

amplitude on the second Riemann sheet” ......

K

π

K

π

arXiv:0607133: 

Can we use this “definition” and apply for τ, D, B decays?
In fact, one can apply the S-matrix method for τ decay as long as it 

comes from the vector and scalar couplings.  

Relevant work in lattice QCD on Kπ p-wave study. arXiv:1307.0736 

D

π

K

π

For the D decay, we have to compute DπΚπ scattering. 

arXiv:1509.03188

Advantage: the number of parameters, strictly 
respecting the unitarity of the scattering. 

What is the impact on the γ/Φ3 measurement?



Conclusions

✴ We are very excited to start a new collaboration 
with a smaller groups of people. 

✴ This year, we will work on the K-pi s wave 
problem in the Belle II and LHCb analysis. 

✴ We have already started monthly Skype meeting. 

✴ We plan a face-to-face meeting this year. 

✴ We plan to keep contributing to the new series 
of the B2TiP workshops.  
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where Γ and Γ denote the decay rates of the B0
and B0

respectively. The 15 coefficients

Ij (Īj) are bilinear combinations of the K∗0
(K∗0

) decay amplitudes and vary with q2

and mKπ. The numbering of the coefficients follows the convention used in Ref. [27].

Coefficients Ij with j ≤ 9 involve P-wave amplitudes only, coefficient I10 involves S-wave

amplitudes only and coefficients with 11 ≤ j ≤ 17 describe the interference between P-

and S-wave amplitudes [28].

The polarity of the LHCb dipole magnet, discussed in Sec. 3, is reversed periodically.

Coupled with the fact that B0
and B0

decays are studied simultaneously, this results in a

symmetric detection efficiency in φ. Therefore, the angular distribution is simplified by

performing a transformation of the φ angle such that

φ�
=

�
φ+ π if φ < 0

φ otherwise,
(2)

which results in the cancellation of terms in Eq. 1 that have a sinφ or cosφ dependence.

The remaining Ij and Īj coefficients can be written in terms of the decay amplitudes

given in Ref. [27]. Defining �Ω� ≡ (cos θK , cos θ�, φ�
), the resulting differential decay rate

has the form

d
5
(Γ+ Γ)

dmKπdq2 d�Ω�
=

1

4π
GS |fLASS(mKπ)|2 (1− cos 2θ�) +

3

4π
G0

P |fBW(mKπ)|2 cos2 θK(1− cos 2θ�) +
√
3

2π
Re

��
GRe

SP + iGIm
SP

�
fLASS(mKπ)f

∗
BW(mKπ)

�
cos θK(1− cos 2θ�) +

9

16π
G⊥�

P |fBW(mKπ)|2 sin2 θK

�
1 +

1

3
cos 2θ�

�
+

3

8π
S3(G

0
P +G⊥�

P ) |fBW(mKπ)|2 sin2 θK sin
2 θ� cos 2φ

�
+

3

2π
AFB(G

0
P +G⊥�

P ) |fBW(mKπ)|2 sin2 θK cos θ� +

3

4π
S9(G

0
P +G⊥�

P ) |fBW(mKπ)|2 sin2 θK sin
2 θ� sin 2φ

�,

(3)

where fBW(mKπ) denotes the mKπ dependence of the resonant P-wave component, which

is modelled using a relativistic Breit–Wigner function. The S-wave component is modelled

using the LASS parameterisation [29], fLASS(mKπ). The exact definitions of the P- and

S-wave line shapes are given in Appendix A. The real-valued coefficients GS , G
Re
SP, G

Im
SP,

G0
P and G⊥�

P are bilinear combinations of the q2-dependent parts of the K∗0
(K∗0

) helicity

3

If the goal is only to eliminate the S-wave 
component, the angular analysis is enough. But if the 

goal is to use the S-wave and/or S-wave/P-wave 
intereference, the result depends on the model.
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FIG. 1: Dalitz plot for D+ → K−π+
A π+

B decays. The squared invariant mass sB of one K−π+ combination is plotted against
sA, the squared invariant mass of the other combination. The plot is symmetrized, each event appearing twice. Lines in both
directions indicate values equally spaced in squared effective mass at each of which the S-wave amplitude is determined by the
MIPWA described in section III. Kinematic boundaries for the Dalitz plot are drawn for three-body mass values M = 1.810
and M = 1.890 GeV/c2, between which data are selected for the fits.

III. FORMALISM

A. K−π+ Partial Wave Expansion

The Dalitz plot in Fig. 1 is described by a complex amplitude Bose-symmetrized with respect to the identical pions
π+

A
and π+

B
:

A = A(sA, sB) + A(sB , sA). (2)

Considering the simplest, tree-level quark diagrams, iso-spin I = 1/2 K−π+ systems are most likely to be produced.
The contribution of the π+π+ amplitude to these decays is not expected to be significant, coming mostly from re-
scattering processes. To test this, data are taken from measurements of π+p → π+π+n reactions [27] in which the
phase of the π+π+ amplitude was found to vary slowly, assuming it to be elastic, from zero at threshold to about
−30◦ at 1.45 GeV/c2, the upper range of the measurements. No evidence for isospin I = 2 resonances exists in this
range. This amplitude is added to those in model C in Ref. [6]. It is found that the π+π+ contribution is, indeed,
insignificantly small (0.7 ± 0.4)%.

The amplitude A is therefore written as the sum of K−π+ partial waves labelled by angular momentum quantum
number L,

A(sA, sB) =
Lmax
∑

L=0

(−2pq)LPL(cos θ) ×

FL

D(q, rD) × CL(sA), (3)

corresponding to production of K−π+ systems with spin J = L and parity (−1)L in these D+ decays. In this analysis,
the sum is truncated at Lmax = 2 since the D-wave K∗

2 (1430), as measured in reference [6], contributes only about
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The first application of the so-called “Model 
Independent Partial Wave Analysis”. 
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FIG. 2: The asymmetry α plotted vs. BW phase φBW for the K∗(892). These quantities are described in the text. α becomes
zero at φBW ∼ 56 degrees.

0.5% to the decays. This is already small and higher partial-waves are expected to be even further suppressed by
the angular momentum barrier. With no way to distinguish I = 1

2 and I = 3
2 components in the K−π+ systems

produced, their sum is measured in this paper.
In Eq. (3), "p and "q are momenta for the K− and bachelor π+

B respectively, in the K−π+
A rest frame. The cosine of

the helicity angle θ is then given in terms of the masses mK− (mπ+) and energies EK− (Eπ+) of the K− (π+
B

) in the
K−π+

A
rest frame by:

cos θ = p̂ · q̂

=
EK−Eπ+

B
−

(

sB − m2
K− − m2

π+

)

/2

pq
. (4)

This is the argument of the Legendre polynomial functions PL. FL
D is a form factor for the parent D meson which

depends on q, L and on the D’s effective radius r = rD:

F0
D = e−(rq)2/12 scalar

F1
D

=
[

1 + (rq)2
]−

1
2 vector

F2
D =

[

9 + 3(rq)2 + (rq)4
]−

1
2 tensor

(5)

For L > 0, these form-factors are derived for non-relativistic potential scattering [28]. For L = 0, the Gaussian form
in Eq. (5), suggested by Tornqvist [29] to be a preferred way to describe scalar systems, is used. This form was used
also in Ref. [6].

The CL(sA) are complex functions, and are the invariant-mass-dependent parts of the respective partial waves.
They do not depend on the other Dalitz plot variable sB and are referred to in this paper as the K−π+ amplitudes.
Provided that interactions between the K−π+

A system and the bachelor π+
B can be neglected, the CL(sA) are related

to the corresponding amplitudes, TL(s) measured in K−π+ scattering experiments, by

CL(s) ≡ |CL(s)|eiφL(s) =

√
s

p

PL(s)TL(s)

pLFL
D

, (6)

where PL(s), unknown functions, describe the K−π+ production in each wave in the D decay process [30]. These
replace the K−π+ coupling present in elastic scattering (proportional to the 2-body phase-space factor

√
s/p and

barrier factor pL).
The principal goal of this analysis is to measure C0(s), using all higher L contributions to the Dalitz plot as an

“interferometer”. This requires a model for C1(s) and C2(s), the reference P - and D- waves.

6

B. The Reference Waves

As in previous analyses, a Breit-Wigner isobar model is used to describe the P - and D-waves. Linear combinations
of resonant propagators WR, one for each of the established resonances R having the appropriate spin, and each with a
complex coupling coefficient with respect to K∗(892), BR = bReiβR , are constructed. Three possible K−π+ resonances
are included in the P -wave, but only one in the D-wave in the invariant mass range available to these decays:

C1(s) = [WK∗(892)(s) + BK∗

1
(1410)WK∗

1
(1410)(s) +

BK∗

1
(1680)WK∗

1
(1680)(s)] × FL

R(p, rR), (7)

C2(s) =
[

BK∗

2
(1430)WK∗

2
(1430)(s)

]

× FL

R
(p, rR). (8)

where FL
R

is a form factor for the resonances in the K−π+ system, required to ensure that the resonant amplitudes
vanish for invariant masses far above the pole masses. It is assumed to have the same dependence on center-of-mass
momentum and angular momentum as the D form factor FL

D
, but to depend on a different effective radius r = rR. The

coefficients in Eq. (7) have their origin in the K−π+ production process arising from D+ decays, and are therefore
treated as unknown parameters in the fits.

Each propagator is assumed to have a Breit-Wigner form defined as:

WR(s) =
1

m2
R
− s − imRΓ(rR, s)

, (9)

where mR and ΓR are the resonance mass and width, and:

Γ(rR, s) = ΓR

(

mR√
s

) (

p

pR

)2L+1 [

FL
R(p, rR)

FL
R(pR, rR)

]2

(10)

where pR is the value of p when s = m2
R
.

C. Parametrization of the S-wave

The goal is to define the S-wave amplitude making no assumptions about either its scalar meson composition, nor
of the form of any S-wave NR terms. To this end, two real parameters are introduced

ck = |C0(sk)| ; γk = φ0(sk) (11)

to define the amplitude C0(sk) = ckeiγk at each of a set of invariant mass squared values s = sk (k = 1, Ns). A second
order spline interpolation is used to define the amplitude between these points (sk, ckeiγk) [31]. The cK and γk values
are treated as model-independent parameters, and are determined by a fit to the data.

To obtain the results in this paper, Ns = 40 equally spaced values of sk are chosen. These are indicated by the
lines drawn on the Dalitz plot in Fig. 1. Other sets of values for sk are also used to check the stability of the results
obtained.

D. Maximum Likelihood Fit

In this analysis, the 3-body mass M is not constrained to be that of the D+ meson. The fits are therefore made in
three dimensions (M, sA, sB). A normalized, log-likelihood function is defined as

L =
∑

events

ln

[(

1 −
3

∑

i=1

fi

)

Ps +
3

∑

i=1

fiP
i
b

]

, (12)

where Ps and P i
b are the normalized signal and background PDF’s, respectively.

Three backgrounds (i = 1, 2, 3), described in Sec. II, are included incoherently in Eq. (12). Each is considered to
constitute a fraction fi of the event sample in the selected range 1.850 < M < 1.890 GeV/c2, and to be described by
the PDF:

P i
b =

Qi(M)θi(sA, sB)

ni
. (13)
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In this analysis, the 3-body mass M is not constrained to be that of the D+ meson. The fits are therefore made in
three dimensions (M, sA, sB). A normalized, log-likelihood function is defined as

L =
∑

events

ln

[(

1 −
3

∑

i=1

fi

)

Ps +
3

∑

i=1

fiP
i
b

]

, (12)

where Ps and P i
b are the normalized signal and background PDF’s, respectively.

Three backgrounds (i = 1, 2, 3), described in Sec. II, are included incoherently in Eq. (12). Each is considered to
constitute a fraction fi of the event sample in the selected range 1.850 < M < 1.890 GeV/c2, and to be described by
the PDF:

P i
b =

Qi(M)θi(sA, sB)

ni
. (13)

S-wave parameterization in MIPWA

D decays are very important for γ/Φ3 
measurement, where the model dependent 

becomes crucial !!!  
Many more examples can be found by the 
talk by A. Palano at IWHSS17 conference.
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kappa + K*0(1430) by Schechter

kappa only by Schechter

What is lacking for kappa
+K*0(1430) with respect 
to LASS must be the u-

channel, t-channel effects

Shift of zero position (pole) 
due to the background The kappa+K*0(1430) 

model can explain rather 
well the LASS phase. The 

lower phase at kappa 
region is due to the 

interference to K*0(1430)

Fitted Parameter γσKK̄ = γσππ γσKK̄ = 0 γσKK̄ = −γσππ

mκ 897 ± 2.1 MeV 951 ± 0.7 MeV 998 ± 1.1 MeV

G′
κ 322 ± 6.0 MeV 277 ± 10.6 MeV 195 ± 5.3 MeV

γκKπ 5.0 ± 0.07 GeV −1 4.32 ± 0.16 GeV −1 4.04 ± 0.08 GeV −1

m∗ 1385 ± 3.3 MeV 1365 ± 2.5 MeV 1349 ± 2.1 MeV

G′
∗ 266 ± 9.5 MeV 201 ± 9.8 MeV 148 ± 5.6 MeV

γ∗ 4.3 ± 2.1 GeV −1 3.7 ± .1 GeV −1 3.1 ± 0.05 GeV −1

χ2 4.0 9.0 25.7

TABLE I. Comparison of different fits in the J = 0 I =
1

2
channel, correspond-

ing to different choices of γσKK̄ .
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FIG. 9. Comparison of the theoretical prediction of R1/2
0 with its experimental

data (for choice γσKK̄ = γσππ)
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6.7 Fit to the mKπ spectrum

• The LASS parameterization, used to express the corresponding invariant-mass-
dependent phase, ΦLASS(mKπ), is given by:

RLASS(m) =
m

|q| cot δB − i|q| + e2iδB
m0Γ0

m0
|q|0

(m2
0 −m2)− im0Γ0

|q|
m

m0
|q|0

∣

∣

∣

∣

∣

m=mKπ

, (6.18)

where

cot δB =
1

a|q| +
1

2
r|q|. (6.19)

Table 6.22 gives the parameters of the line shapes used to derive the invariant-mass-dependent
phase of the components entering the fit model.

Finally, the total amplitude used to describe the mKπ distribution can be written as:

|A(mKπ; cj)|2 =

∣

∣

∣

∣

∣

∫ mmax
ππ

mmin
ππ

(

∑

j

cj
√

HRj
(mKπ, mππ) e

iΦRj
(m)

)

dmππ

∣

∣

∣

∣

∣

2

, (6.20)

= |cK∗|2HK∗ + |cρ0 |2Hρ0 +
∣

∣c(Kπ)0

∣

∣

2H(Kπ)0 + I , (6.21)

with
cj = αj e

iφj , (6.22)

and

HRj
(mKπ) =

∫ mmax
ππ

mmin
ππ

HRj
(mKπ, mππ) dmππ. (6.23)

Table 6.22: Parameters of the resonance line shapes used to express the corresponding
invariant-mass-dependent phase (ΦRj) entering in the mKπ fit model. For the fit the mean
m0 and width Γ0 are fixed to the values taken from the corresponding references. The values
of m0 and Γ0 are expressed in MeV/c2. The parameters r and a correspond to the Blatt-
Weisskopf barrier radius and the scattering length, respectively.

JP Resonance Parameters
Analytical Ref. for
Expression Parameters

1−

K∗0(892)
m0 = 895.94± 0.22

RBW [21]Γ0 = 50.8± 0.9
r = 3.6± 0.6 (GeV/c)−1

ρ0(770)
m0 = 775.49± 0.34

GS [21]Γ0 = 149.1± 0.8
r = 5.3+0.9

−0.7 (GeV/c)−1

0+ (Kπ) S-wave

m0 = 1425± 50

LASS
[21]

Γ0 = 270± 80
a = 2.07± 0.10 (GeV/c)−1

[108]
r = 3.32± 0.34 (GeV/c)−1

123
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LASS by Babar

Gκ

G′
κ

= 0.13 is similar to
Gσ

G′
σ

= 0.29 which was previously obtained [1,2] for the σ. It seems

that such deviations for the low mass scalars are a characteristic feature of our model.

Ordinarily, when the resonance is a dominant feature by itself, the Breit-Wigner form may

be regarded as equivalent to unitarity near the resonance. However, in our model, there are

several different interfering contributions in the low mass region and all work together to

keep the partial wave amplitude within the unitarity bound.

IV. GLOBAL FIT TO DATA IN THE J = 0, I =
1

2
CHANNEL

The magnitude and phase of the experimental I =
1

2
s-wave amplitude are given in Fig. 15

of Aston et al [20], based on a high statistics study of the reaction K−p → K−π+n. We

have translated these to the real part R1/2
0 (s), which is required for our approach, and show

the results† in Fig. 8. It is clear that when one looks at the real part there is an interesting

dip at around 1400 MeV. This is explained as the relatively narrow strange scalar resonance

K∗
0 (1430), which is generally considered to be the best candidate for a p-wave qq̄ state. From

our point of view the most interesting question is whether our model including the κ meson

provides the correct background structure to explain the overall shape of R1/2
0 in this region.

The role of the K∗
0(1430) thus seems analogous to that of the f0(980) in the I = J = 0

partial wave amplitude for ππ scattering.

In that case, as mentioned in section I, the interplay between the narrow resonance with

its background was introduced as a regularization of the direct channel resonance pole which

is ∝
1

s − m2
∗

. In the vicinity of the resonance, upon projection into the appropriate partial

wave, one sets the amplitude equal to

e2iδm∗Γ∗

m2
∗ − s − im∗Γ∗

+ eiδsinδ, (4.1)

where m∗ and Γ∗ are the resonance mass and width, while δ is the background phase which

is assumed to be constant in the neighborhood of the resonance. This form automatically

makes the amplitude unitary in this region. We took our total calculated amplitude (which

was crossing symmetric), without the f0(980) contribution, evaluated at the position of the

resonance, to be the second term in (4.1); this allowed us to interpret the invariant amplitude

(4.1) as being formally crossing symmetric.

†Our error bars are based on propagating the errors in [20], assuming conservatively these in turn

to be given by the experimental circles in Fig. 15 of [20].
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K*0(1430) + BG
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FIG. 5. Current algebra + vectors + σ + f0(980) contribution to R1/2
0 .

of the J = 0 partial wave amplitude. Since the real part of a direct channel resonance

contribution turns sharply negative just above the resonance energy and the graph in Fig. 5

rises above the positive unitarity bound at around 900 MeV we are led to choose mκ to lie

roughly around this energy. With the additional illustrative choices γκKπ = 4.8 GeV−1 and

G′
κ = 280 MeV we see from Fig. 6, which is a plot of R1/2

0 including also the contribution

of the J = 0 partial wave projection of (3.9), that it is easy to achieve a fit in which the

unitarity bound is roughly satisified. The parameters chosen above will be seen in the next

section to be close to those needed for a fit to the experimental data.

We obtain the deviation of our κ parameterization from a pure Breit-Wigner shape by

noting that near the resonance the J = 0 partial wave projection of (3.9) is:

mκGκ

m2
κ − s − imκG′

κ

, (3.10)

where the perturbative width Gκ is given by

Gκ =
3γ2

κKπq(m
2
κ)

64πm2
κ

(
m2

κ − m2
K − m2

π

)2
, (3.11)

and q(m2
κ) is defined in (A9).

Gκ

G′
κ

= 1 is the pure Breit-Wigner situation. The result
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kappa by Schechter

Demonstration of the model dependence


