

Flavour Physics and Theoretical Challenges for Precision

Report of B_05 (2013-2017) & New Proposal of FLAV_02 (2017-)

E. KOU (LAL/IN2P3) & T. Kaneko (KEK)

TYL-FKPPL joint meeting: IPH Strasbourg 10-12th June 2017

Final Report B_05 for 2013-2017

M.-H. Schune & K. Hara

✓ Since 2015, our activity has been integrated in a more global framework of Belle II collaboration (B2TiP): the members of TYL played he central role of B2TiP.

B2TiP

<complex-block>

B2TiP is the official Belle II physics working group. During 2014-2017, we held 4 workshops. Current members will continue until 2019.

B2TiP working group

Find details on the B2TiP website

https://belle2.cc.kek.jp/~twiki/bin/view/Public/B2TIP

WG1	G. De Nardo, A. Zupanic, M. Tanaka, F. Tackmann, A. Kronfeld	
WG2	A. Ishikawa, J. Yamaoka, U. Haisch, T. Feldmann	
WG3	T. Higuchi, L. Li Gioi, J. Zupan, S. Mishima	
WG4	J. Libby, Y. Grossman, M. Blanke	
WG5	P. Goldenzweig, M. Beneke, CW. Chiang, S. Sharpe	
WG6	G. Casarosa, A. Schwartz, A. Kagan, A. Petrov	
WG7	Ch.Hanhart, R.Mizuk, R.Mussa, C.Shen, Y.Kiyo, A.Polosa, S.Prelovsek	
WG8	K. Hayasaka, T. Feber, E. Passemar, J. Hisano	
WG9 (R.Itoh, F.Bernlochner, Y.Sato, U.Nierste, L.Silvestrini, J.Kamenik, S. Simula		

I: Leptonic/Semi-leptonic II: Radiative/Electroweak III: phi1(beta)/phi2(alpha) IV: phi3 (gamma) V: Charmless/hadronic B decays VI: Charm VII: Quarkonium(like) VIII: Tau & low multiplicity IX: New Physics

TYL members contributions to B2TiP

- WG2: Radiative and Electroweak penguin B decays : A. Ishikawa (convener), M.-H. Schune, E. Kou, F. Le Diberder
- ▶ WG3:Time dependent CP asymmetry : S. Mishima (convener)
- WG4: phi_3 measurement : K.Trabelsi (reviewer)
- ▶ WG8:Tau physics: K. Hayasaka (convener), B. Moussallam, J. Hisano, E. Kou
- WG9: New Physics : R. Itoh (convener), Y. Sato (convener), S. Mishima, E. Kou, M. Nojiri

Future prospect of the UT triangle

If all the central values

a little go lower...

Sum of the angles are 180 degree but the side doesn't meet! E.K.& F. Le Diberder for B2TiP working group Results are preliminary

Lattice inputs are very important for the sides measurements

$\mathcal{L} [ab^{-1}]$	$\sigma_{\mathcal{B}} \text{ (stat}\pm sys)$	$\sigma_{LQCD}^{ m forecast}$	$\sigma_{V_{ub}}$
1	3.6 ± 4.4	current	6.2, 6.2
1	1.3 ± 3.6		3.6, 3.6
5	1.6 ± 2.7	in 5 yrs	3.2, 3.0
	0.6 ± 2.2		2.1,1.9
10	1.2 ± 2.4	in 5 yrs	2.7, 2.6
10	0.4 ± 1.9		1.9, 1.7
50	0.5 ± 2.1	in 10 yrs	1.7, 1.4
50	0.2 ± 1.7		1.3,1.0

Future prospect of the CKM UT?

- To understand this "8σ" effect better, we have run a Monte Carlo simulation.
- We randomly sample the central values (1000 trials) assuming Gaussian measurements and compute the significance.
- What is the chance to observe a deviation < 5σ significance in CKM Unitarity Triangle ??

Red points are chi2 indicating deviation from unitarity > 5σ significance

New project FLAV_02

FR

*responsible

Theory

Common physics topics

i) the photon polarization measurement of b->sy processes (with final state, K*, K1 etc, including Y->e+e-)

ii) the hadronic tau decays, in particular, to observe the CP violation in τ ->K $\pi\nu$ channel

iii) the CKM Φ_3/γ determination via channels such as B->D (->K $\pi\pi$)K etc.

These 3 observables are among the Golden Channels of Belle II/LHCb and many efforts are ongoing both theoretically and experimentally.

New project FLAV_02

• The goal of the project :

Investigating a possible improvement in the decay amplitudes description (signal/background) for Belle II and LHCb observables. Based on the latest progresses on the lattice QCD and the hadron physics.

• Possible outcome:

Application of the new amplitude description to the BelleII/LHCb analysis. Publishing a phenomenology paper on the new amplitude description.

 Regular video meeting (journal club style) Experimentalists : raising questions of the analysis Theorists : explaining the basics of the subject and the latest progress in the field

• Visiting Japan/France

Long term (7-10 days?) visit for collaboration Short term visit : B2TiP meeting, Theory group seminars, TYL-FJPPL workshops

Theme of 2017

- * This first year, we will focus on the overlap of the K* resonance and the so-called K- π s-wave contribution.
- * This contribution has been recognized in many measurements, while how to treat this "state" depends on modeling (no common agreement on the modeling).
- * The modeling dependence affects especially to the strong phase, which is the crucial information needed e.g. for determining the CP violating parameters.

Appearance of K-π s-wave

Model dependence results in different strong phase. For the CP asymmetry measurement, the phase from the vector-scalar form factor is crucial.

S-wave parameterization in MIPWA

$$C_0(s_k) = c_k e^{i\gamma_k}$$

D decays are very important for γ/Φ3 measurement, where the model dependent becomes crucial !!!

Discussions on-going...

arXiv:0607133:

 κ (Kpi S-wave) is not a usual resonance.. A strict definition is "pole in the Kπ->πK amplitude on the second Riemann sheet".....

Can we use this "definition" and apply for τ, D, B decays? In fact, one can apply the S-matrix method for τ decay as long as it comes from the vector and scalar couplings.

arXiv: | 509.03 | 88

For the D decay, we have to compute $D\pi K\pi$ scattering.

Advantage: the number of parameters, strictly respecting the unitarity of the scattering. What is the impact on the $\gamma/\Phi3$ measurement?

arXiv:1307.0736

Relevant work in lattice QCD on $K\pi$ p-wave study.

Conclusions

- * We are very excited to start a new collaboration with a smaller groups of people.
- * This year, we will work on the K-pi s wave problem in the Belle II and LHCb analysis.
- * We have already started monthly Skype meeting.
- * We plan a face-to-face meeting this year.
- * We plan to keep contributing to the new series of the B2TiP workshops.

Backup

arXiv:1606.04731 LHCb B->Kπμμ

If the goal is only to eliminate the S-wave component, the angular analysis is enough. But if the goal is to use the S-wave and/or S-wave/P-wave intereference, the result depends on the model.

The remaining I_j and I_j coefficients can be written in terms of the decay amplitudes given in Ref. [27]. Defining $\vec{\Omega}' \equiv (\cos \theta_K, \cos \theta_\ell, \phi')$, the resulting differential decay rate has the form

$$\frac{d^{5}(\Gamma + \overline{\Gamma})}{dm_{K\pi}dq^{2} d\vec{\Omega'}} = \frac{1}{4\pi}G_{S} \left|f_{LASS}(m_{K\pi})\right|^{2} (1 - \cos 2\theta_{\ell}) + \frac{3}{4\pi}G_{P}^{0} \left|f_{BW}(m_{K\pi})\right|^{2} \cos^{2}\theta_{K}(1 - \cos 2\theta_{\ell}) + \frac{\sqrt{3}}{2\pi}\text{Re} \left[\left(G_{SP}^{\text{Re}} + iG_{SP}^{\text{Im}}\right)f_{LASS}(m_{K\pi})f_{BW}^{*}(m_{K\pi})\right] \cos\theta_{K}(1 - \cos 2\theta_{\ell}) + \frac{9}{16\pi}G_{P}^{\perp \parallel} \left|f_{BW}(m_{K\pi})\right|^{2} \sin^{2}\theta_{K} \left(1 + \frac{1}{3}\cos 2\theta_{\ell}\right) + \frac{3}{8\pi}S_{3}(G_{P}^{0} + G_{P}^{\perp \parallel})\left|f_{BW}(m_{K\pi})\right|^{2} \sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos 2\phi' + \frac{3}{2\pi}A_{FB}(G_{P}^{0} + G_{P}^{\perp \parallel})\left|f_{BW}(m_{K\pi})\right|^{2}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin 2\phi_{\ell}, \qquad (3)$$

where $f_{\rm BW}(m_{K\pi})$ denotes the $m_{K\pi}$ dependence of the resonant P-wave component, which is modelled using a relativistic Breit–Wigner function. The S-wave component is modelled using the LASS parameterisation [29], $f_{\rm LASS}(m_{K\pi})$. The exact definitions of the P- and S-wave line shapes are given in Appendix A. The real-valued coefficients $G_{\rm S}$, $G_{\rm SP}^{\rm Re}$, $G_{\rm SP}^{\rm Im}$, $G_{\rm P}^{0}$ and $G_{\rm P}^{\perp\parallel}$ are bilinear combinations of the q^2 -dependent parts of the K^{*0} (\overline{K}^{*0}) helicity hep-ex/0507099 E79I D+->K-π+π+

S-wave parameterization in MIPWA

$$C_0(s_k) = c_k e^{i\gamma_k}$$

D decays are very important for γ/Φ3 measurement, where the model dependent becomes crucial !!!

The first application of the so-called "Model Independent Partial Wave Analysis".

$$C_{1}(s) = \left[\mathcal{W}_{K^{*}(892)}(s) + B_{K_{1}^{*}(1410)}\mathcal{W}_{K_{1}^{*}(1410)}(s) + B_{K_{1}^{*}(1680)}\mathcal{W}_{K_{1}^{*}(1680)}(s)\right] \times \mathcal{F}_{R}^{L}(p, r_{R}),$$

$$C_{2}(s) = \left[B_{K_{2}^{*}(1430)}\mathcal{W}_{K_{2}^{*}(1430)}(s)\right] \times \mathcal{F}_{R}^{L}(p, r_{R}).$$

$$\mathcal{F}_{D}^{0} = e^{-(rq)^{2}/12} \qquad \text{scalar}$$

$$\mathcal{F}_{D}^{1} = \left[1 + (rq)^{2}\right]^{-\frac{1}{2}} \qquad \text{vector}$$

$$\mathcal{F}_{D}^{2} = \left[9 + 3(rq)^{2} + (rq)^{4}\right]^{-\frac{1}{2}} \qquad \text{tensor}$$

$$\mathcal{W}_{R}(s) = \frac{1}{m_{R}^{2} - s - im_{R}\Gamma(r_{R}, s)},$$

$$\Gamma(r_{R}, s) = \Gamma_{R}\left(\frac{m_{R}}{\sqrt{s}}\right)\left(\frac{p}{p_{R}}\right)^{2L+1}\left[\frac{\mathcal{F}_{R}^{L}(p, r_{R})}{\mathcal{F}_{R}^{L}(p_{R}, r_{R})}\right]^{2}$$

Many more examples can be found by the talk by A. Palano at IWHSS I 7 conference.

Demonstration of the model dependence

