

A highly granular Silicon-Tunsgten ECAL for the ILC

Vincent Boudry École polytechnique, Palaiseau for SiW-ECAL groups

FJPPL 2017 IHPC, Strasburg 11/05/2017

IT Accelerator Engineering Center ITAEC

Involved persons & institutions

French Group			Japanese Group			1
Name	Title	Lab./Organis.	Name	Title	Lab/Organis.	1
Vincent Boudry	Dr	LLR	Daniel Jeans	Assoc. Prof	KEK (form ^{iy} .	Toky
Jean-Claude Brient	Dr	LLR	Taikan Suehara	Assist. Prof	Kyushu University	
Vladislav Balagura	Dr.	LLR	Kiiyotomo Kawagoe	Assist. Prof	Kyushu University	
Kostiantyn Shpak	PhD	LLR	Sachio Komamiya	Prof	Univ of Tokyo	
Rémi Cornat	Dr.	$LLR \rightarrow LPNHE$	Yoshio Kamiya	Prof	Univ of Tokyo	
Roman Poeschl	Dr.	LAL	Izumi Sekiva	Master Student	Kyushu University	
Dirk Zerwas	Dr.	LAL	Hiroaki Yamashiro	Master Student	Kyushu University	
Adrian Irles	Dr.	LAL	Hitoshi nakanishi	Master Student	Univ. of Tokyo	

2 "new" institutions

ILC parameters

Constrains on detectors:

Basis: sep of H \rightarrow WW/ZZ \rightarrow 4j

 $- \sigma_z/M_z \sim = \sigma_w/M_w \sim = 2.7\% \oplus 2.75\sigma_{sep}$

 $\Rightarrow \sigma_{\rm E}/{\rm E}$ (jets) < 3.8%

− Sign ~ S/ \sqrt{B} ~ (resol)-^{1/2} 60%/ \sqrt{E} → 30%/ \sqrt{E} ⇔ +~40% L

Large TPC

- Precision and low X₀ budget
- Pattern recognition

High precision on Si trackers

- Tagging of beauty and charm

Large acceptance

Fwd Calorimetry:

- lumi, veto, beam monitoring

Imaging Calorimetry

H. Videau and J. C. Brient, "Calorimetry optimised for jets," in Proc. 10th International Conference on Calorimetry in High Energy Physics (CALOR 2002), Pasadena, California. March, 2002.

Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 1170

An Ultra-Granular SiW-ECAL for experiments

Particle Flow optimised calorimetry

- Standard requirements
 - Uniformity, Hermeticity, Stability, (E, x, t) Resolution
- PFlow requirements:
 - Extremely high granularity
 - Compacity (density)
- SiW+C baseline choice for future Lepton Colliders

Basic Choices:

- Tungsten as absorber material

 $X_0 = 3.5 \text{ mm}, R_M = 9 \text{ mm}, \lambda_1 = 96 \text{ mm}$ Narrow showers

Assures compact design

- Silicon as active material

Support compact design Allows for ~any pixelisation

- Robust technology
- Excellent signal/noise ratio: ≥10
- Intrisic stability (vs environment, aging) Albeit expensive...
- Tungsten–Carbon alveolar structure
 Minimal structural dead-spaces
 Scalability

SiW ECAL: Physics & Technological prototype

Physics prototype: 2005–2011

PFA proof of concept with comparison to MC (PandoraPFA etc.) Electronics outside

1cm x 1cm pixels

- full 30 layers

(used for PAMELA sat.)

16.5%(stochastic) 1–2% (constant) obtained with 1–45 GeV e⁻/e⁺ at 2006/2008 BT

Assess the feasibility:

Establish procedures and develop

test benches for mass production : AIDA-2020, pre-prod test benches.

- 10 000 SLAB's $_{\supset}$ ~75 000 ASU to be produced for ILD

Technological prototype

Embedded electronics

- SKIROC2 analog/digital ASICs
 - auto-triggered, zero suppr., PP
- pixels 5×5mm²

ILD Building blocks: SLAB's & ASU's

R&D for "mass production" and QA

- Quality tests & preparation of large production
- Modularity → ASU & SLABs
- Choice of square wafers
 - (≠ from hex: SiD, CMS HGCAL)
- Numbers ($R_{ECAL} = 1,8 \text{ m}$, $|Z_{Endcaps}|=2,35 \text{ m}$) (likely to be reduced by 30–40%)
 - Barrel modules: 40 (as of today all identical)
 - Endcap Modules: 24 (3 types)
 - ASUs = ~75,000
 - Wafers ~ 300,000 (2500 m²)
 - VFE chips ~ 1,200,000
 - Channels: 77Mch
 - Slabs = 6000 (B) + 3600 (EC) = 9600
 - \neq lengths and endings

U layout of a long slab

Full assembly chain *resp:* R. Cornat

LLR, LPNHE, LAL

'Simplified view'

ILD SIW ECAL | FJPPL, IPHC | 11/05/2017

Beam test 2017: Prototype

3-Apr-17 0-Apr-17

with 10 first^t SLAB's

- noise handling
 - Scans.
 - Time dependance ?
 - PS dependance ?
- Cosmic data taking
 - A hasher running conditions... (longer integration time)
- Beam test in 12-24 June @ DESY
 - Readiness review mi-April

Analysis + of nov 15 data.

 $- \Rightarrow$ Start of assembly for second batch ...

Vincent.Boudry@in2p3.fr ILD SiW ECAL | rurrL, Irmu | 11/00/2017

VFE ASIC [LLR, Kyushu] Omega Skiroc2 vs Skiroc2a

Socket test of ASICs on ASU

- Noise & functional checks
 - trigger (over)efficiency, tagging, ADC, TDC, ...
- Running modes for Beam Tests

• ↔ Full SLABS V. Boudry, S. Chaitanya, A. Lobanov (LLR) Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 11/05/2017

Same with

SK2CMS

Silicon Sensors

Cost driven

- ~30% of the total cost of the SiW-ECAL
 - \Rightarrow Units Cost reduction(CALIIMAX program)
- Decoupling of Guard Ring (Square Events).
- new design of ILD detector

Command Sensors @ Hamamatsu

- direct contact with HPK engineers
 - (last @ LCWS'2016)
- Possibility of design for 8" in 186mm alveola

Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 11/05/2017

'quantum unit' of ILD dimensions (here 4" wafer)

Wafers [LLR, Kyushu]

"Edgeless wafers" integrated in 2 of the 10 SLABs (2016)

- needs BT data (with muon beam \rightarrow edge scan)
 - Beam Tests June 2017 @ DESY

Baby sensors

- HPK change or resistivity in 2013
- Parasitic production

Position Sensitive Detector

- Laser scan
 - reconstruction.

320 µm thickness lower resistivity

16,17: Hexagon (hexagonal cells, triangular cells) 19,20: 4x4 (small pix) (0 GR, 2 GR, 2.5 mm) 21,22: PSD (7 mm) (meshed, non-meshed)

Each > 40 sensors

Prelim PSD reconstruction

Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 11/05/2017

Irradiation tests [Tokyo]

Expected dose in ECAL endcaps (1 TeV ILC)

Expected dose in ECAL endcaps (1 TeV ILC) [exted from CLIC studies]

- inner part of ECAL endcap: up to 10⁹ 1MeV eq. neutrons / cm² / year

Test of

- super-capacitor (AVX BestCap, 400mF)
- conductive glue: EPOTEK
- sensor HPK baby ECAL sensor (3x3 pixels) [standard guard ring design]

- Capacitance
- Resistance?
- OK but puzzling
- I to V curve
 - lim. to ASIC
 - for 50 years of ILC •

H. Nakaníshí, C. Kozakaí, Y. Kamíya, D. Jeans, S. Komamíya

Vincent.Boudry@in2p3.fr ILD SIW ECAL | FJPPL, IPHC | 11/05/2017

New Simulation [D. Jeans]

10GeV, -5<phi<5 deg

towers

plugLength = 0 mm

simhitNoConvEnWtCos1h_BARREI

module

ECAL driver used in ILD models has been largely rewritten (Mokka \rightarrow DD4HEP)

- more modular code:
- less duplication Barrel & Endcap
- more configurable...

Effect of cracks [RAW= no correction at all!!]

Effect of plug (missing in previous simulations)

- Drop ~ 15%

2.343

0.2067

.7 0.8 cos(theta)

Std Dev 3

Performances: photon reconstruction confusion studies [K. Shpak]

"raw performances"

- Efficiency vs separation distance
- EM vs EM (e / γ)
- EM vs π
- Using Particle Flow Algorithms
 - PandoraPFA, Arbor (IHEP/LLR)
 - GARLIC (LLR, Tokyo)

Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 11/05/2017

Performances: tau reconstruction [D. Jeans] CP State analysis in $H \rightarrow \tau \tau$

Using GARLIC Higgs CP state and CP conservation in coupling Best for τ in ee \rightarrow ZH, Z \rightarrow ee, qq NIM A810 (2016) 51 $H \rightarrow \tau \tau$ CP of H \rightarrow ff through polarisation of f arXiv:1507.01700 - Needs full τ reconstruction in hadronic tau decays (# neutrino = 1), if we know $h_{125} = \cos \psi_{CP} h^{CPeven}$ the tau production vertex, *h* is a spin 0 state: the impact parameters of charged tau decay products, + sin $\psi_{CP} A^{CPodd}$ the p, of the tau-tau system, $f \bar{f} > = |\uparrow\downarrow\rangle + e^{2i\psi} |\downarrow\uparrow\rangle$ then the neutrino momenta can be reconstructed $g\bar{f}(\cos\psi'_{CP} + i\gamma^{5}\sin\psi'_{CP})fh_{125}$ ψ= 0 CP even. $\pi/2$ CP odd H20: 2 ab⁻¹@ 250 GeV H20: 2 ab 1 @ 250 GeV ILD simulation ILD simulation events / bin experiments / bin 400 Through decay input $\psi_{CP} = 0$ Mean = -0.001 $Z \rightarrow e e$ preliminary RMS = 0.068100 signal 300 **CP from polarimeters** : taus from spin 0 parent preliminary H bka 200 non-H bkg r lest frame 50 toy T rest polarimeter) 100 plane containing momentum and 0.2 ψ^{fit} [rad] 100 polarimeter of T -0.2Δω ττ mass [GeV/c²] extracted Ψ_{CP} h- (polarimeter)

T. Hieu et al, "Tau decay identification in ILD" arXiv:1510.05224

Prospects

Very active collaboration between

- LLR, LAL, (LPNHE)₂₀₁₇ + Omega
- Tokyo, Kyushu + KEK₂₀₁₇

Pure R&D (CALICE):

- test of ASIC (test benchs, material, experience)
- test of wafers (contact with Hamamatsu)
- beam test and irradiation tests

Toward ILD detector re-design

- Consolidated baseline & small radius
- Simulation
- Mechanical design
- Performance studies
- Physics & Detector analysis

Extras

Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 11/05/2017

Structure de coût d'ILD

Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 11/05/2017

SKIROC2 / 2A Analogue core

http://omega.in2p3.fr

callier@omega.in2p3.fr

mega

ROC chips for ILC prototypes

SPIROC2 Analog HCAL (AHCAL) (SIPM) 36 ch. 32mm² June 07, June 08, March 10, Sept 11

ROC chips for technological prototypes: to study the feasibility of large scale, industrializable modules (Eudet/Aida funded)

🔄 🌔 mega

HARDROC2 and MICROROC

Semi Digital HCAL (sDHCAL) (RPC, µmegas or GEMs) 64 ch. 16mm² Sept 06, June 08, March 10

> SKIROC2 ECAL (Si PIN diode) 64 ch. 70mm² March 10

Requirements for electronics

- Large dynamic range (15 bits)
- Auto-trigger on ½ MIP
- On chip zero suppress

10⁸ channels

- Front-end embedded in detector
 - Ultra-low power : 25µW/ch

http://omega.in2p3.fr

callier@omega.in2p3.fr

SKIROC2A by S. Callier, C. de la Taille

- BUG CORRECTIONS
 - Some « Zero events » during digitization : DONE (added delays, cf. SP2C)
 - Substrate Shielding, Inputs Shielding : IMPROVED (added connections)
 - Test mode for naked dies (voltage drop off & missing pads) : CORRECTED
 - Trig Ext path no more thru delay cells to store the analog data : DONE
- IMPROVEMENTS
 - 4-bit DAC for trigger level adjustment : OPTIMIZED
 - Bandgap : CHANGED (from HR3)
 - Delay Cell : Slightly IMPROVED
 - AutoGain Selection : CHANGED (from SP2C)

Production possible through CMS-HGCAL collaboration

Vincent.Boudry@in2p3.fr ILD SiW ECAL | FJPPL, IPHC | 11/05/2017

Prototyping : who is doing what © R. Cornat

