Calibration and Beam Profile Fitting

Shifan Zuo

April 20, 2017

Visibility of a Strong Point Source

The observed visibility of a strong point source with flux S_{c} is

$$
\begin{aligned}
V_{i j} & =g_{i} g_{j}^{*} A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) A_{j}^{*}\left(\hat{\boldsymbol{n}}_{0}\right) S_{c} e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot\left(\boldsymbol{u}_{i}-\boldsymbol{u}_{j}\right)} \\
& =S_{c} \cdot g_{i} A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{i}} \cdot\left(g_{j} A_{j}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{j}}\right)^{*} \\
& =S_{c} \cdot G_{i} G_{j}^{*}
\end{aligned}
$$

where $G_{i}=g_{i} A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{i}}$.
In the presence of outliers and noise, we have

$$
\frac{V_{i j}}{S_{c}}=G_{i} G_{j}^{*}+S_{i j}+n_{i j}
$$

Written in matrix form, it is

$$
\mathbf{V}^{\prime}=\frac{\mathbf{V}}{S_{c}}=\mathbf{V}_{0}+\mathbf{S}+\mathbf{N}
$$

where $\mathbf{V}_{0}=\mathbf{G G}{ }^{H}$ is a rank 1 matrix represents the visibilities of the strong point source, \mathbf{S} is a sparse matrix whose elements are outliers or misssing values, and \mathbf{N} is a matrix with dense small elements represents the noise.

Matrix Decomposition

Now denote V^{\prime} as V, by solving the optimization problem

$$
\min _{V_{0}, S} \frac{1}{2}\left\|V_{0}+S-V\right\|_{F}^{2}+\lambda\|S\|_{0}
$$

or its relaxation

$$
\min _{V_{0}, S} \frac{1}{2}\left\|V_{0}+S-V\right\|_{F}^{2}+\lambda\|S\|_{1}
$$

we can get V_{0}, S, and $N=V-V_{0}-S$.
Where
Frobenius norm : $\|M\|_{F}=\sqrt{\sum_{i j} M_{i j}^{2}}$
l_{0}-norm: $\|M\|_{0}=$ number of non-zero elemets of M

$$
l_{1} \text {-norm : } \quad\|M\|_{1}=\sum_{i j}\left|M_{i j}\right|
$$

Method to solve G

We have $V_{0}=G G^{H}$, where $G_{i}=g_{i} A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{i}}$.
To sovle G, we Eigen-decompose V_{0} as

$$
V_{0}=U \Lambda U^{H}=\lambda u u^{H},
$$

where, as $\operatorname{rank}\left(V_{0}\right)=1, \Lambda$ has only one non-zero eigen-value λ, and u is the corresponding eigen-vector.

We see

$$
G=\sqrt{\lambda} u
$$

Method to Solve Gain g_{i}

From $G_{i}=g_{i} E_{i}$, where $E_{i}=A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{i}}$, suppose the gain g_{i} is stable during a period of time, we can get g_{i} as

$$
g_{i}=\frac{E_{i}^{\dagger} \cdot G_{i}}{E_{i}^{\dagger} \cdot E_{i}}
$$

We get the calibrated visibility as

$$
V_{i j}^{\mathrm{cal}}=V_{i j} /\left(g_{i} g_{j}^{*}\right)
$$

Calibration uncertainties may due to:

- beam profile: $A_{i}\left(\hat{\boldsymbol{n}}_{0}\right)$;
- time accuracy: $\hat{\boldsymbol{n}}_{0}$;
- position of feeds: \boldsymbol{u}_{i}.

Beam Profile Fitting

From $G_{i}=g_{i} A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{i}}$, we see

$$
\left|G_{i}\right|=\left|g_{i}\right| A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) .
$$

suppose the gain g_{i} is stable during a period of time, we have

$$
\left|G_{i}\right| \propto A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) .
$$

For a calibrator which has a DEC close to the array's latitude, such as Cygnus A, we have

$$
\begin{aligned}
\left(A_{i}\right)_{t_{0}} & \approx 1 \\
\left|\left(g_{i}\right)_{t_{0}}\right| & =\left|\left(G_{i}\right)_{t_{0}}\right|
\end{aligned}
$$

at transit time t_{0}.

Visibility Matrix Decomposition

$$
V=V_{0}+S+N
$$

G at transit time of Cygnus A

$$
G_{i}=g_{i} A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{i}}
$$

East-West pol

North-South pol

G during a period of time

$$
G_{i}=g_{i} A_{i}\left(\hat{\boldsymbol{n}}_{0}\right) e^{2 \pi i \hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{u}_{i}}
$$

East-West pol

North-South pol

Center Finding by Sinc / Gaussian Fitting

East-West pol

North-South pol

Align and Normalize

East-West pol

North-South pol

Beam Profile Fitting

East-West pol, FWHM $=3.7^{\circ}$

North-South pol, FWHM $=3.13^{\circ}$

