Calibration and Beam Profile Fitting

Shifan Zuo

April 20, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Visibility of a Strong Point Source

The observed visibility of a strong point source with flux S_c is

$$\begin{aligned} V_{ij} &= g_i g_j^* A_i(\hat{\boldsymbol{n}}_0) A_j^*(\hat{\boldsymbol{n}}_0) S_c e^{2\pi i \hat{\boldsymbol{n}}_0 \cdot (\boldsymbol{u}_i - \boldsymbol{u}_j)} \\ &= S_c \cdot g_i A_i(\hat{\boldsymbol{n}}_0) e^{2\pi i \hat{\boldsymbol{n}}_0 \cdot \boldsymbol{u}_i} \cdot (g_j A_j(\hat{\boldsymbol{n}}_0) e^{2\pi i \hat{\boldsymbol{n}}_0 \cdot \boldsymbol{u}_j})^* \\ &= S_c \cdot G_i G_j^*, \end{aligned}$$

where $G_i = g_i A_i(\hat{n}_0) e^{2\pi i \hat{n}_0 \cdot \boldsymbol{u}_i}$. In the presence of outliers and noise, we have

$$\frac{V_{ij}}{S_c} = G_i G_j^* + S_{ij} + n_{ij}.$$

Written in matrix form, it is

$$\mathbf{V}' = \frac{\mathbf{V}}{S_c} = \mathbf{V}_0 + \mathbf{S} + \mathbf{N},$$

where $\mathbf{V}_0 = \mathbf{G}\mathbf{G}^H$ is a rank 1 matrix represents the visibilities of the strong point source, \mathbf{S} is a sparse matrix whose elements are outliers or misssing values, and \mathbf{N} is a matrix with dense small elements represents the noise.

Matrix Decomposition

Now denote V' as V, by solving the optimization problem

$$\min_{V_0,S} \frac{1}{2} \|V_0 + S - V\|_F^2 + \lambda \|S\|_0$$

or its relaxation

$$\min_{V_0,S} \frac{1}{2} \|V_0 + S - V\|_F^2 + \lambda \|S\|_1$$

we can get V_0 , S, and $N = V - V_0 - S$. Where

Frobenius norm :
$$\|M\|_F = \sqrt{\sum_{ij} M_{ij}^2}$$

$$\begin{split} l_0\text{-norm}: & \|M\|_0 = \text{number of non-zero elemets of } M\\ l_1\text{-norm}: & \|M\|_1 = \sum_{ij} |M_{ij}| \end{split}$$

Method to solve G

We have $V_0 = GG^H$, where $G_i = g_i A_i(\hat{\boldsymbol{n}}_0) e^{2\pi i \hat{\boldsymbol{n}}_0 \cdot \boldsymbol{u}_i}$.

To sovle G, we Eigen-decompose V_0 as

$$V_0 = U\Lambda U^H = \lambda u u^H,$$

where, as rank $(V_0) = 1$, Λ has only one non-zero eigen-value λ , and u is the corresponding eigen-vector.

We see

$$G=\sqrt{\lambda}u$$

Method to Solve Gain g_i

From $G_i = g_i E_i$, where $E_i = A_i(\hat{n}_0)e^{2\pi i \hat{n}_0 \cdot u_i}$, suppose the gain g_i is stable during a period of time, we can get g_i as

$$g_i = \frac{E_i^{\dagger} \cdot G_i}{E_i^{\dagger} \cdot E_i}$$

We get the calibrated visibility as

$$V_{ij}^{\mathsf{cal}} = V_{ij}/(g_i g_j^*).$$

Calibration uncertainties may due to:

- beam profile: $A_i(\hat{\boldsymbol{n}}_0)$;
- time accuracy: \hat{n}_0 ;
- position of feeds: u_i .

Beam Profile Fitting

From
$$G_i=g_iA_i(\hat{n}_0)e^{2\pi i\hat{n}_0\cdot u_i}$$
, we see $|G_i|=|g_i|\,A_i(\hat{n}_0).$

suppose the gain g_i is stable during a period of time, we have

 $|G_i| \propto A_i(\hat{\boldsymbol{n}}_0).$

For a calibrator which has a DEC close to the array's latitude, such as Cygnus A, we have

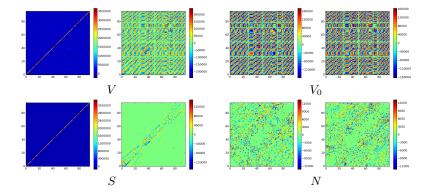
$$(A_i)_{t_0} \approx 1,$$

 $|(g_i)_{t_0}| = |(G_i)_{t_0}|,$

at transit time t_0 .

Visibility Matrix Decomposition

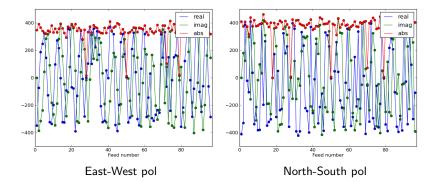
 $V = V_0 + S + N$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

${\cal G}$ at transit time of Cygnus A

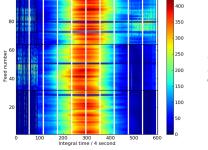
$$G_i = g_i A_i(\hat{\boldsymbol{n}}_0) e^{2\pi i \hat{\boldsymbol{n}}_0 \cdot \boldsymbol{u}_i}$$



▲ロト▲圖ト▲画ト▲画ト 画 のべの

G during a period of time

$$G_i = g_i A_i(\hat{\boldsymbol{n}}_0) e^{2\pi i \hat{\boldsymbol{n}}_0 \cdot \boldsymbol{u}_i}$$



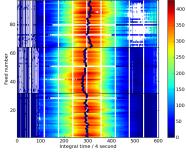


East-West pol

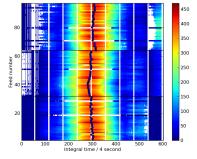
North-South pol

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Center Finding by Sinc / Gaussian Fitting



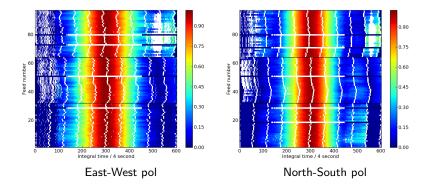
East-West pol



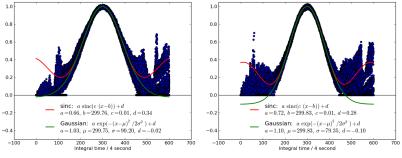
North-South pol

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Align and Normalize



Beam Profile Fitting



East-West pol, FWHM = 3.7°

North-South pol, FWHM = 3.13°

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ