Un trés bon cours en Français peut se trouver ici: http://lappweb.in2p3.fr/~buskulic/cours/Notes_cours_Buskulic_Jijel.pdf

Un livre en anglais, plutôt ancien mais toujours essentiel : Fundamentals of Interferometric Gravitational Wave Detectors P. Saulson

Gravitational wave detection on Earth (the optical principle)

Jerome Degallaix

École de Gif 2017

For the next 75 minutes

- I. Origin and effect of GW
- II. Response of a laser interferometer
- III. The sensitivity of the Michelson
- IV. The upgrade path

Origin and effect of GW

- 1. a simplified look
 - 2. a more rigorous approach

Gravitational waves

Gravitational waves

Perturbations of space time due to acceleration of masses

Space time ripples

Animation from GW150914 press conference here

Potential sources

Fusion of compact objets

Star core collapse (supernovae)

Pulsars

Continious signal

Cosmological background

Effect of gravitational waves

Gravitational wave amplitude

Typical amplitude for two black holes

$$h = 1.5 \times 10^{-21} \left(\frac{Mass}{30 M_{\odot}} \right) \left(\frac{400 Mpc}{Distance} \right) \left(\frac{Frequency GW}{50 Hz} \right)^{\frac{2}{3}}$$

Gravitational wave amplitude

2 free falling masses

Amplitude of the deformation : $\Delta L = (1/2) h \times L$

Order of magnitude $\Delta L = 0.5 \text{ h} \times L$

If $h \sim 10^{-21}$ so we should measure:

Sun – Proxima Centauri distance with an accuracy of 0.02 mm

Or 2 km with an accuracy of 10⁻¹⁸ meter!

Origin and effect of GW

- 1. a simplify lock
- 2. a more rigorous approach

It all starts from the Einstein equations!

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\frac{8\pi G}{c^4} T_{\mu\nu}$$

Space time curvature

Mass-energy distribution

We will make the following assumption:

- 1. Far from any sources : $T_{\mu\nu}=0$
- 2. Small distortions from the flat metric : $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$

with :
$$\eta_{\mu\nu}=\left(egin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight) \ \ \mbox{and} \ \ \ h_{\mu\nu}\ll 1$$

And also

- 3. Using the trace reverse metric : $\overline{h}_{\mu\nu}=h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h$
- 4. Taking the Lorentz gauge

We finally arrived at the following wave equation:

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial^2 t}\right) \overline{h}_{\mu\nu} = 0$$

Using the transverse traceless gauge ($\overline{h}_{\mu\nu}=h_{\mu\nu}$), a GW propagating along the z axis can be written :

$$\overline{h}_{\mu\nu} = A_{\mu\nu} e^{ik(ct-z)} \qquad A_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Calculating the flight path of a photon

Assuming a GW propagating along the z axis (polarisation +) and a photon along the x axis,

The proper time for the photon is:

$$ds^{2} = -(cdt)^{2} + (1 + h_{+})dx^{2} + (1 - h_{+})dy^{2} + dz^{2} = 0$$

Which becomes:

$$cdt = \left(1 + \frac{1}{2}h_{+}\right)dx$$

Analog to the previous : $\Delta L = (1/2) h \times L^1$

Effect of the two polarisations

\prod

Response of a laser interferometer

- 1. Interaction GW signal light
 - 2. Response of a Michelson
 - 3. The Fabry-Pérot cavity
 - 4. A more complex configuration

Starting from the previous equation:

$$cdt = \left(1 + \frac{1}{2}h_{+}\right)dx$$

To be equivalent to:

$$dx = c\left(1 - \frac{1}{2}h_+\right)dt$$

We want to calculate the time required for a light beam to do a round trip

$$\int_0^{2L} dx = \int_{t_r}^t c \left(1 - \frac{1}{2}h(u)\right) du$$

t arrival time, t_r time of departure

$$(t - t_r) = \frac{2L}{c} + \frac{1}{2} \int_{t_r}^t h(u) du$$

We suppose a monochromatic GW wave:

$$h(t) = h_0 \cos(\omega_{GW} t)$$

After some algebra (and one assumption):

$$(t - t_r) = \frac{2L}{c} + \frac{h_0}{\omega_{GW}} \sin\left(\frac{\omega_{GW}L}{c}\right) \cos\left(\omega_{GW} \left(t - L/c\right)\right)$$

- 1. For low frequency, we found the usual formula
- 2. The modulation sign is reversed for the other transverse direction (with + polarisation)
- 3. No effect for certain GW frequencies
- 4. Equivalent to a (small) modulated phase shift for the light

Goal: detecting a differential phase shift

With a Michelson interferometer!

Animation from a Michelson here

The detector antenna pattern

You could have some blind post!

Response of a laser interferometer

- 1. Interaction GW signal light
- 2. Response of a Michelson
- 3. The Fabry-Pérot cavity
- 4. A more complex configuration

The Michelson interferometer

2 arms along the North and East direction (N and E index)

Propagating the electric field

Starting field : E_0

After propagating along a distance L : $E_1 = e^{-ikL}E_0$

Dealing with the beam splitter:

$$it_{BS}$$
 $r_{BS} = t_{BS} = \frac{1}{\sqrt{2}}$

Beamsplitter

Convention name for the electric fields

Field equations

$$\begin{split} E_{\mathrm{Mich}}^{\mathrm{BP}} &= \left(r_{\mathrm{BS}}^2 r_{\mathrm{EM}} \mathrm{e}^{-\mathrm{i}2\mathrm{k}L_{\mathrm{N}}} - t_{\mathrm{BS}}^2 r_{\mathrm{EM}} \mathrm{e}^{-\mathrm{i}2\mathrm{k}L_{\mathrm{E}}} \right) E_0 \\ E_{\mathrm{Mich}}^{\mathrm{DP}} &= \left(\mathrm{i}r_{\mathrm{BS}} t_{\mathrm{BS}} r_{\mathrm{EM}} \mathrm{e}^{-\mathrm{i}2\mathrm{k}L_{\mathrm{N}}} + \mathrm{i}r_{\mathrm{BS}} t_{\mathrm{BS}} r_{\mathrm{EM}} \mathrm{e}^{-\mathrm{i}2\mathrm{k}L_{\mathrm{E}}} \right) E_0 \end{split}$$

Introducing differential and common lengths for the arms:

$$L_{-} = \frac{L_{N} - L_{E}}{2}$$
 $L_{+} = \frac{L_{N} + L_{E}}{2}$
 $L_{E} = L_{+} + L_{-}$
 $L_{E} = L_{+} - L_{-}$

Finally, we arrived at:

$$\begin{split} E_{\mathrm{Mich}}^{\mathrm{BP}} &= \left(-\mathrm{i}\mathrm{e}^{-2kL+}\sin(2kL-)\right)r_{\mathrm{EM}}E_{0} \\ E_{\mathrm{Mich}}^{\mathrm{DP}} &= \left(-\mathrm{i}\mathrm{e}^{-2kL+}\cos(2kL-)\right)r_{\mathrm{EM}}E_{0} \end{split}$$

Field equations

$$\begin{split} E_{\mathrm{Mich}}^{\mathrm{BP}} &= \left(-\mathrm{i} \mathrm{e}^{-2\mathrm{k}L+} \sin(2\mathrm{k}L-) \right) r_{\mathrm{EM}} E_0 \\ E_{\mathrm{Mich}}^{\mathrm{DP}} &= \left(-\mathrm{i} \mathrm{e}^{-2\mathrm{k}L+} \cos(2\mathrm{k}L-) \right) r_{\mathrm{EM}} E_0 \end{split}$$

From the two previous equations:

- 1. Energy is preserved between the 2 ports
- 2. Common motion induces only a phase shift
- 3. Differential motion modulates the power

The differential phase between the 2 arms due to the GW signal is converted to a variation of power at the dark port.

Increase the phase difference to increase the signal!

Finding the right operating point

Adding a differential modulation due to the passing GW

$$\begin{array}{lcl} \Delta L_{-} & = & \frac{1}{2} \left(L_{N} \left(1 + \frac{h_{0}L_{N}}{2} \cos \left(\boldsymbol{\omega}_{GW} t \right) \right) - L_{E} \left(1 - \frac{h_{0}L_{E}}{2} \cos \left(\boldsymbol{\omega}_{GW} t \right) \right) \right) \\ \Delta L_{-} & = & L_{-} + h_{0}L_{+} \cos \left(\boldsymbol{\omega}_{GW} t \right) \end{array}$$

Since the amplitude of the GW is very small:

$$\begin{split} &\cos(a+xcosb) \; \simeq \; \cos(a)-xsin(a)cos(b) \\ &\sin(a+xcosb) \; \simeq \; \sin(a)-xcos(a)cos(b) \\ &E_{\mathrm{Mich}}^{\mathrm{BP}} \; \simeq \; \left(-\mathrm{i}\mathrm{e}^{-2kL+}\left(\sin(2kL-)+2kh_0L_+\cos(2kL_-)\cos\left(\pmb{\omega}_{\mathrm{GW}}t\right)\right)\right)r_{\mathrm{EM}}E_0 \\ &E_{\mathrm{Mich}}^{\mathrm{DP}} \; \simeq \; \left(\mathrm{i}\mathrm{e}^{-2kL+}\left(\cos(2kL-)-2kh_0L_+\sin(2kL_-)\cos\left(\pmb{\omega}_{\mathrm{GW}}t\right)\right)\right)r_{\mathrm{EM}}E_0 \end{split}$$

Need to be on the dark fringe to maximise the signal on the south port!

Finding the right operating point

But, I do not measure an amplitude but a power with my photodiode...

$$\begin{split} \left| E_{\mathrm{Mich}}^{\mathrm{DP}} \right|^2 & \quad \alpha \quad \left| \cos(2kL-) - 2kh_0L_+ \sin(2kL_-) \cos\left(\pmb{\omega}_{\mathrm{GW}}t\right) \right|^2 \\ & \quad \alpha \quad \cos^2(2kL-) - 4kh_0L_+ \cos(2kL-) \sin(2kL_-) \cos\left(\pmb{\omega}_{\mathrm{GW}}t\right) + \mathcal{O}(h_0^2) \end{split}$$

If perfectly on the dark fringe, signal proportional to ${\rm h}_0^2$,

Need to add a slight dark fringe offset to have a signal proportional to $h_{\rm 0}$

A closer look at the differential phase

Signal proportional to kh_0L_+

For a simple Michelson, to increase the detectable signal:

- 1. Lower the wavelength
- 2. Increase the length of the arm

Wavelength depends on laser availability and optics, it is fixed at 1064 nm for current interferometers.

Some typical arm lengths

Type of experiments	Arm length
Optomechanics	~1 mm
Large table top experiments	~ 1m
GW prototypes	~ 10 m
Current GW detectors	~ 1 km
Next generation GW detectors	~ 10 km

The phase transfer function

Reminder: $\lambda = 1064 \text{ nm}$

$$(t - t_r) = \frac{2L}{c} + \frac{h_0}{\omega_{GW}} \sin\left(\frac{\omega_{GW}L}{c}\right) \cos\left(\omega_{GW}(t - L/c)\right)$$

Response of a laser interferometer

- 1. Interaction GW signal light
- 2. Response of a Michelson
- 3. The Fabry-Perot cavity
 - 4. A more complex configuration

The Fabry-Perot cavity

Two mirrors facing each other separated by a certain distance.

Presence of light interferences inside the cavity, enhancing or destroying the electric field between the 2 mirrors.

Cavity fields

$$E_{circ} = \frac{it_{IM}}{1 - r_{IM}r_{EM}e^{-ik2d}}E_0$$

$$E_{trans} = \frac{-t_{IM}t_{EM}e^{-ik2d}}{1 - r_{IM}r_{EM}e^{-ik2d}}E_0$$

$$E_{\mathrm{ref}} = \left(r_{\mathrm{IM}} - \frac{t_{\mathrm{IM}}^2 r_{\mathrm{EM}} e^{-ik2d}}{1 - r_{\mathrm{IM}} r_{\mathrm{EM}} e^{-ik2d}}\right) E_0$$

Circulating power a function of the detuning

Some key figures

The cavity gain
$$~G = \frac{T_{IM}}{\left(1 - \sqrt{R_{IM}R_{EM}}\right)^2}$$

The finesse
$$\mathfrak{F} = \frac{\pi \sqrt[4]{R_{IM}R_{EM}}}{1-\sqrt{R_{IM}R_{EM}}}$$

The FSR
$$\frac{c}{2L}$$

The FWHM
$$\frac{\text{FSR}}{\mathfrak{F}}$$

A particular case, a very reflective end mirror

This is the case for GW detector ($T_{EM} = 4-5 \text{ ppm}$)

Yes, and why does that help?

It is all in the phase in reflection!

Phase shift for different finesse

Amplification of the phase shift by a factor : $\frac{2v}{\pi}$

Typical Fabry-Perot cavity finesses

Type of experiments	Finesse
Laser analysers	~100
Reference cavities / atomic clock	~100 000
First generation GW detector	50
Second generation GW detector	450
Thrid generation GW detector	~900

The phase transfer function with FP cavity

- Increase the sensitivity
- But further reduction of the bandwidth

$$f_c = \frac{c}{4 \Im L}$$

\prod

Response of a laser interferometer

- 1. Interaction GW signal light
- 2. Response of a Michelson
- 3. The Fabry-Pérot cavity
- 4. A more complex configuration

The signal recycling cavity

New mirror at the output port

For the GW signal sidebands

Possibility to tune the apparent transmission of input mirror for the GW signal

Tuning the response of the interferometer

\prod

The sensitivity of the Michelson

- 1. Fundamental quantum noise
 - 2. Power recycled Michelson

How to quantify the noise?

Use the power spectral density : S_{V}

$$S_{V}(\boldsymbol{\omega}) = \lim_{T \to \infty} \frac{1}{2T} \left| \int_{-T}^{+T} V(t) e^{-i\boldsymbol{\omega}t} dt \right|^{2}$$

In unit of : $\frac{[V]^2}{Hz}$, that represents the noise power density in a given bandwidth as a function of the frequency.

We use also the noise amplitude spectral density:

$$\sqrt{\mathrm{S_V}(\mathbf{\omega})}$$

is also the Fourrier transform of the auto correlation function

Ok, that definition does not really help!

Frequency [Hz]

The intrinsic shot noise

Measuring an optical power is counting the number of photon for a given time.

Due to the discrete nature of light, arrival time of photons follows a Poisson statistics

$$S_{SN}(\mathbf{\omega}) = 2Ph_p \frac{c}{\lambda}$$

Shot noise equivalent to h

Optical power at the output of the interferometer:

$$P^{DP} = \frac{P_0}{2} (1 + \cos(4kL_{-}))$$

In presence of a GW signal:

$$P^{DP} = \frac{P_0}{2} \left(1 + \cos(4k(L_- + \frac{L_+}{2}h_0(t))) \right)$$

2 contributions, a DC term and a (small) signal term:

$$S_{\mathrm{SN}}^{\mathrm{DP}}(\pmb{\omega}) = P_0 h_\mathrm{p} \frac{c}{\pmb{\lambda}} (1 + \cos(\pmb{\beta}))$$

$$S_h^{DP}(\mathbf{\omega}) = P_0^2 k^2 L^2 \sin^2{(\mathbf{\beta})} S_h(\mathbf{\omega})$$

With :
$$\beta = 4 \mathrm{kL}_{-}$$

Shot noise equivalent to h

The minimum signal we can detect is when the PSD of the shot noise is equal to the PSD of the signal:

$$\frac{S_{h}^{DP}(\mathbf{\omega})}{S_{SN}^{DP}(\mathbf{\omega})} = 1$$

Which gives:

$$S_{h}^{min}(\boldsymbol{\omega}) = \frac{1}{(2\pi L_{+})^{2}} \frac{h_{p} \lambda c}{P_{0}}$$

$$\sqrt{S_h^{\min}(\boldsymbol{\omega})} = \frac{2 \times 10^{-20}}{\sqrt{P_0}} [1/\sqrt{Hz}]$$

Very good aproximation but not an exact one

(missing a factor 2)

Shot noise limited (simple) Michelson

Radiation pressure noise

Measuring the mirror position with light, induced a back action: the radiation pressure noise.

$$F = 2 \frac{P_{inc}}{c}$$

PSD for a simple Michelson:

$$S_{RP}(\mathbf{\omega}) = \frac{1}{mL\mathbf{\omega}^2} \sqrt{\frac{4hP}{c\lambda}}$$

Shot noise limited (simple) Michelson

Shot noise limited (simple) Michelson

Quantum noise with FP arm cavities

\prod

The sensitivity of the Michelson

- 1. Fundamental quantum noise
- 2. Power recycled Michelson

Do not waste any light!

Adding a new mirror

In real interferometer, power gain ~ 40

Updated sensitivity

3 km long simple Michelson

Updated sensitivity

3 km long simple Michelson with arm cavities (F=450)

Updated sensitivity

3 km long simple Michelson with arm cavities (F=450) and PR

IV

Gaussian beams and Fabry-Perot cavities
(if time permits)

Gaussian beam

The laser beam circulating in the interferometer is a gaussian beam

(eigen mode of the free space propagation)

Gaussian beam

Evolution of the beam radius:

A minima in the beam size at the waist

Gaussian beam

A second paramater: the complex wavefront curvature

Infinite at the waist (flat wavefront)

The more complex picture

Gouy phase shift

Mathematical description of the beam :

$$E(r,z) = E_0(r,z) e^{\left(-\frac{r^2}{w^2(z)}\right)} e^{\left(-i\left(kz + k\frac{r^2}{2R(z)} - \psi(z)\right)\right)}$$

Not only the fundamental mode!

Amplitude envelope

Phase shit from propagation

Phase shit from wavefront

FP Cavities and Gaussian beam

Adding a mirror to reflect the beam on its path:

And a second one:

Eigen mode of FP cavity with spherical mirrors are the same as free space

The optimal case

The optimal case

If I tilt the end mirror

With a bigger input beam

For the interferometer

Misalignment / mode mismatching decreases the performances