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v1970 John Holland - schemata theorem

v1975 J. Holland publication: “Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Application to Biology, Control, and Artificial Intelligence”.
The Seminal work

v1975 K. De Jong (J. Holland’s student), Thesis: “An analysis of the behavior of a class of
genetic adaptive systems”. Broad applicability of GAs

v1989 David Goldberg Book: “Genetic Algorithms in Search, Optimization, and Machine
Learning”

It deals with the topic at high level and is considered a milestone in GAs story. It
reports techniques like Multi Objective GA (MOGA), today very current.

q Genetic Algorithms (GAs) introduction: Historical Notes

John Holland
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q Introduction: What & Why

What are Genetic Algorithms (GAs)
Searching procedures based on natural selections (genetic laws)

Why choosing GAs versus other techniques … 
A basic answer:

Newton-Raphson methods (and many variants) are based on local information.
The Scan moves in direction of  “local maxima” or “local minima”
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End

A Parabola



q Introduction: What & Why

Why Genetic Algorithms **

Despite, Newton-Raphson methods can overcame the local solutions issue by some 

tricks …
GAs are:
Ø naturally able to manage the local solution issue

Ø naturally parallelizable

Ø usable with a minimum mathematical effort

And, by empiric results,
show strong capability to manage problems where other methods fail

** pros and cons in literature



q Where: Genetic Algorithms (GAs) in Beam Dynamics Optimization -1

GAs give strong advantages …

Ø in multi-dimensional problems with variables strongly non linear correlated

A main example :

Ø Space Charge & its non-linear nature: correlates low energy beam-line parameters
Ø Also frozen beams (space charge off): Other complex situations

Example (1) Thomson/Compton Sources (e.g. SPARC_lab, STAR, ThomX, ELI-np, Munich
Compact Light Source) which ask for :

For the spectral density: 1) very low DE/E, 2) low Emit

For the photon flux : 3) Qbunch as high as possible



Example (2) Ultra short e-beams (e.g. SPARC_lab, LCLS, REAGE, XFEL, EUPRAXIA, … ):

§ Femtosecond light pulses (FEL/X-FEL), Atoms in chemical reactions, phase-transition, 
Photosynthesis Water Splitting : timescale 1-100 fs [2014 “first snapshots of water 
splitting” by LCLS; ScienceDaily;  Nature]

§ Plasma Wave Acceleration: λplasma order of 30-600 fs . The Witness much shorter, the
Driver (pwfa) comparable to λplasma

§ Femtosecond Electron Diffraction (FED)
Molecular or atomic motion movies: phase transitions, …, . Timescale: few 10s of fs.
Relativistic case: Eb ≈ 5MeV, Qb ≈ 100fC, εtr<0.1 mm-mrad, σz<30μm (100fs)

§ THz radiation (by CoTrRad)
0.1 up to tens THz is of great interest for both longitudinal electron beam diagnostics
(fs scale) and spectroscopy in pump-and-probe experiments ....

q Where: …  - 2



Genetic Algorithms 
applied to Beam-Line Optimization



q From Beam-Lines to Chromosomes

Genetic Laws work on Chromosomes ==> Chromosomes are made of genes (parameters)

A Beam-Line

Chromosome

=

Beam-Line = Parameters Array ==> One Chromosome



q Following Genetic Laws: Fitness Function

Chromosomes Must be sorted
by a Fitness function
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Rules to pass generation è in generation:
§ Selection: bluffed Roulette wheel
§ Mutations

…. & others methods & tricks. The rule: closest to Nature, best  performances 



Ø Following Genetic Laws: Reproduction & Mutation

0	< <	100	Chromosome Sorting by 

sum of 
probability == 1

By the Roulette Wheel: two Chromosomes

Gun gradient
Gun Ф injection

Bz intensity 
first solenoid

Chromosomes reproduction

Mutation, with
probability < 1%

Tracking
code

99.
97.
90.
85.

60.
58.



Ø Following Genetic Laws: Real coding (1) and binary coding (2)

Chromosome

(2)Binary
Coding

0		<		Gene	Value	<		255.127

1|1|1|1|1|1|1|1	.	1|1|1|1|1|1|1

0|0|0|0|0|0|0|0.	0|0|0|0|0|0|0

8	bits 7	bits

15	bits	X	Gene
As DNA in 
Genetic Laws 

Decoding to decimal 
and compute the fitness

(1) Genetic rules on Real Numbers  
Main loop, 

Generation in Generation

Main loop, 
Generation in Generation

Genetic rules on 
binary arrays 



Ø Following Genetic Laws: Elitism

Concluding: the elitism

Sorting

oper

+2 +5

>

Nowadays “quasi-classic” optimization techniques
o elitism
o advanced mutation operators  
o hill climbing 
o regeneration from best solutions
o … … …
o & parallelization  quasi-mandatory



Ø E.G.: SPARC beam line Optimization in Thomson case  
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“MAXIMIZING THE BRIGHTNESS OF AB ELECTRON BEAM BY MEANS OF A GENETIC ALGORITHM”
A. Bacci, C. Maroli, V. Petrillo, A. Rossi, L. Serafini - NIMB 263 (2007) 488-496

Old Kind of Fitness Function

(a) By	hand
(b) By	GA

spot spectrum



The 
GIOTTO code



v WAS BORN in 2008;    Language: Fortran 90/95

v USE for Optimization of Generic Code’s Parameters or for Statistical (Jitters) Analysis

v INPUTS based on NameList & on two internal DataBase

v CAN easily Drive different codes:
Now: ASTRA’s Generator,    ASTRA,    QFluid (Plasma acceleration, A. Rossi modifications) 

v Current Version (Ver. 10.0):
Linux 64 bit; Windows 64 – (compilers gfortran or INTEL fortran)
Parallelized with OPEN-MPI (Linux), MS-MPI or INTEL MPI (Windows)
Used @ PSI (S. Bettoni) and tested at Desy-Pitz

v Code and Documentations: 
URL: http://pcfasci.fisica.unimi.it/Pagine/GIOTTO/GIOTTO.htm (server down, pardon!)
Exist an User manual for version 8.5 2012 (needs updates)

GIOTTO  - Genetic Interface for OpTimising Tracking with Optics



GIOTTO – Genetic	Interface	for	OpTimising Tracking	with	Optics	

Switch from Optimizations to Statistical analysis is really EASY

Jitters sampling interval: Uniform or Gaussian

Every NameList ’s variables can be used as a GENE (optimizable) & Any code working with
NameList is directly importable in GIOTTO.
ASTRA	e.g.	:	Phi(1)…Phi(50),	MaxE(1:50),	MaxB(1:50),	sig_x (laser	cathode) ,sig_clock
(Laser	@	cathode),	…,	…		(no	limit	on	the	number)

Constraints		freely	defined	by	the	user	(under	test)

Optimization	techniques:	elitism;	advanced	mutation	operators; hill	climbing; ant	colony	
regeneration	from	best	solutions

Important	GIOTTO’s	features:

From	2008	up	to	day,	the	code	is	grew	in	power	and capability

user freely defined by Astra outputs:
Targets: bunch PosZ or Time, En, Enspread, SigZ, Xemit, sigX, divergX, Yemit, ….



All variables usable in
THE BEAM-LINE

Now: Astra_generator, Astra, QFluid

Optimizable variables

THE GENEs 

Ø GIOTTO’s Data-Bases

DB_1

Sub-DB_1

Astra Outputs (or other codes)

THE FITNESS 

emittance, envelope, En_spread,
etc. …

DB_2



Ø GIOTTO’s  INPUT FILE

GINxx.xx.ini is divided in two parts:
1) One NameList (&GA) giving all the directive to GIOTTO

2) Three keyNames defining: CONSTRAINTS, FITNESS and GENES

1)

2)



Ø GIOTTO’s INPUT FILE: &GA NameList

Under developing (it slows 
down heavily GIOTTO)

Optimization
Rarely needs changes 

Usually few 
variables are 
used



Ø GIOTTO  INPUT FILE: Key_Names

Rarely needed

Comments

Comments

GENES
Definition

Definition



Ø GIOTTO: FITNESS FUNCTION

Reverse Polish Notation: Opers Follow Operands
Ø 3   4   +   =   7
Ø Stack based operation
Ø Does not need brackets 

Fitness Funciont strategy to Cope with Multi Objectives Problems (MO):

o One Single Criterium per Equation piece (Objectives Wights)

o To be close to the Goal mean close to the Gaussian Curve Top

o The ‘Far region’ (referring to optimization) has to be on the maximum Gaussin slope

o change the FF in real time (ander implementation)
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a) not yet full optimized

b) full optimized



GIOTTO
Optimization & 

Statistical analysis



2.0	m	drift

Beam-Line Optimization for: ultra short, ultra cold, High brightness bunches

A Beam-Line studied with:

Ø Experience

Ø An Ad hoc GIOTTO use 

GENES in the Optimization:

Ø Gun:

• (1) Phase & (2) Solenoid (Bz)

Ø TW cavity (RF- Compressor):

• (3) Phase & (4) Solenoids

Ø C-band cavity: (5) Phase

GOALS:

Ø Low Emittance

Ø Low Energy Spread

Ø femptosec. Sig_Z

C-band cavity 

Drift	@
20	
MeV

ΔE	=100	
keV

GIOTTO
RESULT

Emit[um]

Envelop[mm]

Sig_z[um]



GIOTTO  OUTPUT: RISULTATI.TXT
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- P.O.Shea et al., Proc. of 2001 IEEE PAC, Chicago, USA (2001) p.704.
- M. Ferrario. M. Boscolo et al., Int. J. of Mod. Phys. B, 2006 (Taipei 05 Workshop)

€ 

10 ps← → $ $ 

Beam-Line STATISTIC for Laser Comb (ECHO Bunch Generations)

4	Bunches

6 Bunches
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Beam-Line STATISTIC for Laser Comb – TWO Bunches case : Current Statistic



GIOTTO
and the ELI-NP case



ELI-NP LINAC machine

Beam Dynamic features

Electron Linac design to drive bright Compton back-scattering gamma-ray sources
A. Bacci, D. Alesini, P. Antici, M. Bellaveglia, R. Boni et al.

J. Appl. Phys. 113, 194508 (2013);   online: http://dx.doi.org/10.1063/1.4805071

The Peculiar Gamma Ray Source features

In next page,
how to reach these parameters 



The	Emittance
Maximization	of	electron	density	into	transverse	phase	space	:
==>	means	==>	very	low	emittance		̴		0.4	mm-mrad

The	Energy	Spread
Minimization of	the	energy spread:	the	source	spectral density require Δγ/γ <	0.1%,	we	
have	chosen	a	conservative	threshold	of	0.05	%

Energy	Spread	by	RF	curvature:

ELI-NP Injector merit factors

σz <	280	µm	@	the	injector	exit

Booster	freq.



Result: GIOTTO optimization on merit factors ( booster’s injector)

Comparison using Tstep (a Parmela heir) & Astra codes

1) A space charged dominated region needs a double check
2) Astra gives the possibility to use Giotto (Giotto improves 30-60 %)

γε =0.4  μm
<E>=79.8 MeV
σz= 0.279 mm
σE/<E> = 1.65%

Tstep

Astra with GIOTTO
Tstep

Astra
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Injector jitters analysis
a full S2E:

Injector→ C Booster → γ-Source
Astra→ Elegant → Cain



Jitters kept in Consideration in GIOTTO:

RF:
Ø 200 fs Phase (overestimated):  (1) Gun &  (2,3) TW cavities (S- band)

Ø 2‰ in pick field:  (4) Gun & (5,6)TW cavities (S- band)

laser: 
Ø (7) 200 fs arrival time
Ø (8) 20 µm pointing instabilities (on cathode)
Ø (9) 5% energy fluctuation (Charge fluctuation)

Different Machines:
+/- 70 µm as misalignments for:     RF Cavities,     Gun Solenoid,     TW Solenoid

Uniform distributions Jitters; a very conservative choice

ELI-NP booster’s Injector Jitters (9 parameters)



All	jitters

Machine_1	
160	runs

Machine_2
160	runs

Machine_3
160	runs

34

ELI-NP Injector Jitters Analysis – Energy & Bunch length

σz



All	jitters

Machine_2
160	runs

Machine_3
160	runs

35

Machine_1	
160	runs

ELI-NP Injector Jitters Analysis – Centroid, Envelope, Emittance



In Conclusion

Genetic Algorithms show great promise in the Beam Dynamics optimization and problem
solution.

GIOTO has been applied successfully to:
• refine known beam lines, with improvements around 20-40 % (in the performances)
• have been used to find completely new schemes, as in case of the hybrid velocity

bunching

Demand of EXTREME HIGHT QUALITY electron beams doesn’t stop and often it makes 
necessary to cope with strong space charge

Beam-Line optimization is Nowadays really a critical issue

Thanks for your attention



RF-Gun 1.6 S-band 120 MV/m

Emittanzometro’s data are handled by a dedicate algorithm that
return an intensity matrix PhaseSpace.txt (successively interpolated
to increase the definition)

Emittanzometro
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Emittance in	Real	Beam

Since real beams usually do not have well defined boundaries, a method for calculating the emittance, is
to choose a specific density contour, in the phase space, that represents from the 50% (worst cases) up
to the 98-99% (best cases) of the whole bunch charge (or integrated intensity). Within this density
contour and under certain conditions, such emittance satisfies the Liouville’s theorem and thus is
conserved
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d
fitness A

IF =

c g b a g b a
One of the 30 generation’s chromosome with 25 genes

g ab

1 2 830

The space phase ellipse’s sampling is a thorny
issue as uniformity and dimension. A shuffled
uniform random generator is used.



One of the more significant curve - analyzed also with two other methods - that shows a strongly marked
double minimum

Some phase space of the emittance curve

From first tests the code seemed to be able to analyze
the rough phase space images, not yet interpolated An	output	file

Data analysis at SPARC - Some relevant results



Developing of a dynamic link library (dll), in fortran 90, that can interface with LabView

N. Corrector Current of maximum 
variation per corrector

Sample of the Correctors 
configurations

rms of the BPM off-set

best solution

Generation n

Generation n+1 memory of the 
best solution

from simulations it converges to 0.200 mm of maximum off-set after 80 generation
Considering 2s to test each configuration → 36 minutes
The real world could be faster ant colony optimization

BPM	and	Genetic	control	of	the	steering	correctors	A code to compute the rms 

emittance of high brightness electron beams
4


