
Semitauonic B decays: overview and prospects

1

GUY WORMSER
LAL, CNRS/IN2P3, PARIS SACLAY UNIVERSITY

ON BEHALF OF THE BABAR AND LHCB COLLABORATIONS

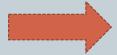
A Raphaël

Talk outline

2

- Introduction
- The first BABAR measurement (2012)
- Quick review of all other mesurements until now
- The new R(D*) measurement from LHCb

First public release at FPCP2017 on June 5, 2017


- The normalization channel BR measurement from BABAR
- Prospects and conclusion

Lepton Flavour Universality a key ingredient of the standard model

 In the SM, the charged and neutral current interactions must respect Lepton Flavour Universality

Equal couplings of the W and Z bosons to

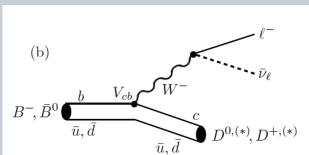
electrons, muons and taus

- For the Z boson, this has been checked at the 2 per mille accuracy at LEP
- For the W boson, the τ BR is 2.8 σ above <e, μ > which are equal to 2 per mille precision

$$\left. \frac{\mathcal{B}(W \to \tau \nu_{\tau})}{[\mathcal{B}(W \to e \nu_{e}) + \mathcal{B}(W \to \mu \nu_{\mu})]/2} \right|_{\rm LEP} = 1.077 \pm 0.026,$$

• (an exemple of a theory paper regarding this effect :Arxiv : hep-ph/0607280)

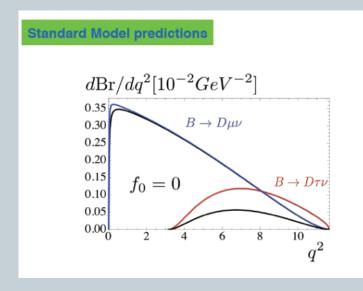
Can ATLAS (or CMS) measure this precisely?

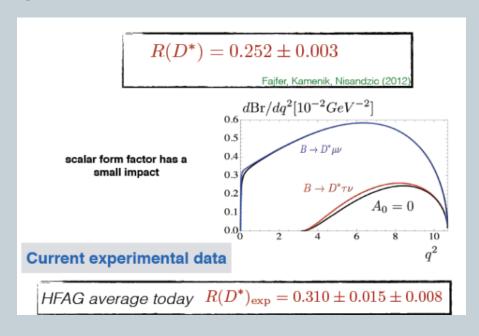


Why semitauonic decays are interesting? Very simple b->c W system

- Tree Level decays combine the advantages :
 - Very precise prediction from SM :R(D*) known better than to 2% precision, using $R(D^*) = (B \rightarrow D^* \tau v / B \rightarrow D^* \mu v)$
 - O Abundant channel BR(B°→D*τν)=1,24%, one of the largest individual BR
 - \circ Sensitivity to new physics : (simplest realization) A charged Higgs will automatically couple more to the τ . LFU violation can also occur through other mechanisms (leptoquarks,..)
- They offer several hadronisation implementations:
 - \circ D*,D°,D+,Ds, Λ_c ,J/ ψ
 - O Differing not only by various properties of the spectator particle but also its spin $0,1(D^* \text{ and } J/\psi)$ and 1/2 $(\Lambda_c!!)$

$$\frac{\mathrm{d}\Gamma^{SM}(\bar{B} \to D^{(*)}\ell^{-}\bar{\nu}_{\ell})}{\mathrm{d}q^{2}} = \underbrace{\frac{G_{F}^{2} |V_{cb}|^{2} |p_{D^{(*)}}^{*}| q^{2}}{96\pi^{3}m_{B}^{2}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2}}_{\text{universal and phase space factors}} \times \underbrace{\left[(|H_{+}|^{2} + |H_{-}|^{2} + |H_{0}|^{2}) \left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right) + \frac{3m_{\ell}^{2}}{2q^{2}}|H_{s}|^{2}\right]}_{\text{hadronic effects}}.$$

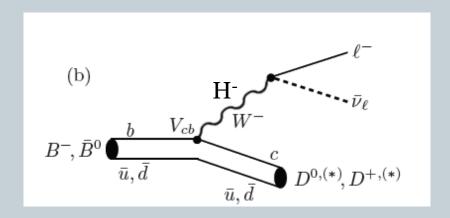

ArXiv: HEP-1703-01766

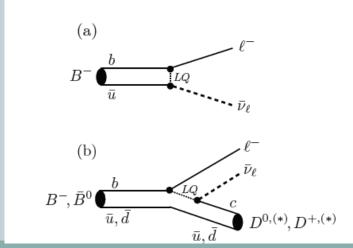


R(D*) is predicted more precisely than R(D)

Transparents du GDR 30 Mars

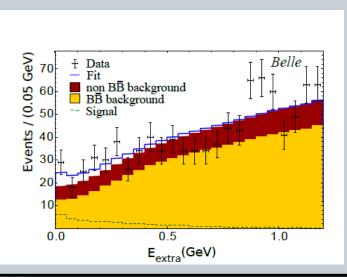
Talk from A. Celis (LMU) GDR Intensity Frontier March 30, 2017 https://indico.in2p3.fr/event/14159

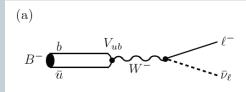




New physics reach

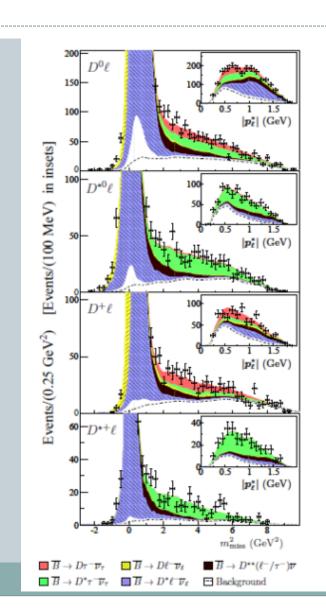
- Charged Higgs, Leptoquarks are the usual suspects
- Sensitivity comparable or even higher at ATLAS and CMS in some models : many scenarios still open after taking into account the present direct exclusions domains
- If the WA average is correct,, , R(D*)/R(D*)_{SM}=1.23: Large new physics effects !!
- Sensitivity not only on the yield but also in the internal characterics of the event (q² and angular distributions)
- New physics can couple to Vcb transitions and not Vub!!
- Therefore, very important to get a high statistics sample as pure as possible





Search for LFU violation in V_{ub} decays

- Note that in the long term the 'Vub' analog b->uW is also quite interesting, since its coupling to new physics can be different from the cW case
 - Rather difficult in practice B factories can search for $B \rightarrow \pi \tau \nu$
 - LHCb can look for Λ_b >pτv or B° >p \overline{p} τv
- A similar reaction is the annihilation diagram


$$\mathscr{B}(B^- \to \tau^- \overline{\nu}_{\tau}) = (1.06 \pm 0.19) \times 10^{-4}.$$

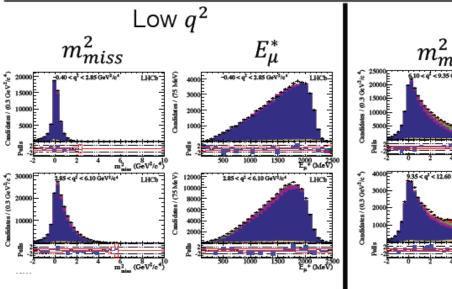
$$\mathscr{B}^{SM}(B^- \to \tau^- \overline{\nu}_{\tau}) = (0.75 \pm ^{0.10}_{0.05}) \times 10^{-4}$$

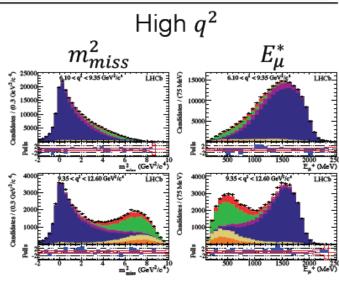
The pioneering BABAR 2012 result PRL109, 101802(2012)

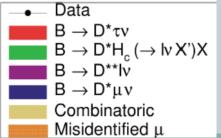
- At the Y(4S), the strategy is a priori simple :
 - Reconstruct a « tag » B to gain access to the other B center of mass frame and thus to the missing mass
 - Select events with D*μ topology on the signal side
 - o Count events with μ much softer than for normal semileptonic decays
 - The winning « trick » :
 much higher efficiency
 reconstruction of the
 « tag » B particle

Other R(D*) results up to now

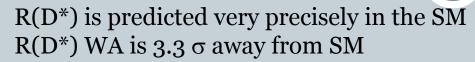
- 3 new measurements by BELLE collaboration
 - Hadronic tag as for BABAR-leptonic tau decay
 - × PRD92, 072014(2015)
 - Semileptonic Tag, more statistics but worse CM and missing mass resolution-leptonic tau decay
 - × PRD94, 072007 (2015)
 - O Hadronic tag –hadronic tau decay in $\pi/\pi\pi^{\circ}$. Important to access tau polarization information. Real challenge to fight hadronic background
 - × PRL118,211801 (2017), arXiv1612. 00529
- 1 new mesurement from LHCb collaboration
 - × PRL115, 1183(2015)
 - Muonic tau decay in a hadronic collider !!!!

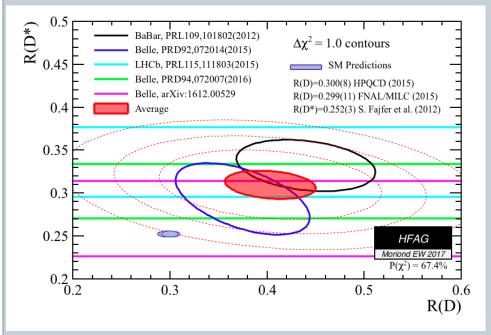



LHCb muonic result (2015)


PRL 115 111803 (2015)

Fit Result


- Shown above: signal fit to "signal" data passing isolation selection
- Result $\frac{N_{\tau}}{N_{\mu}} = (4.32 \pm 0.37) \times 10^{-2}$, $R(D^*) = 0.336 \pm 0.027 \pm 0.030$
- $N(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu}) = 363,000 \pm 1600$



R(D*) status today

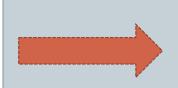
http://www.slac.stanford.edu/xorg/hfag/semi/index.html

Combined R(D) and R(D*) is 4 σ away from SM

If WA is correct, $R(D^*)/R(D^*)_{SM}=1.23$: Large new physics effects !!

The unusual features of the LHCb analysis $D^*\tau\nu$; $\tau \rightarrow 3\pi(\pi^\circ)$

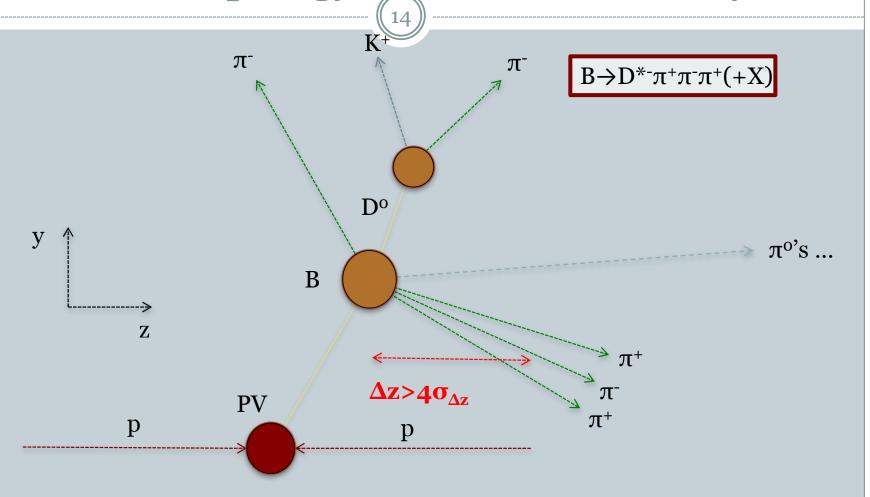
- A semileptonic decay without (charged) lepton !!:
 - ZERO background from normal semileptonic decays!!!!
- In this analysis, it is the background that leads to nice mass peaks and not the signal !!!
 - This provides key handle to control the various backgrounds
- Only 1 neutrino emitted at the τ vertex
 - The complete event kinematics can be reconstructed with good precision
- No sensitivity to τ polarisation $(m_{a1}^2 \approx 0.5 * m_{\tau}^2)$
- Note: measure R(D*-) and not R(D*) as B Factories



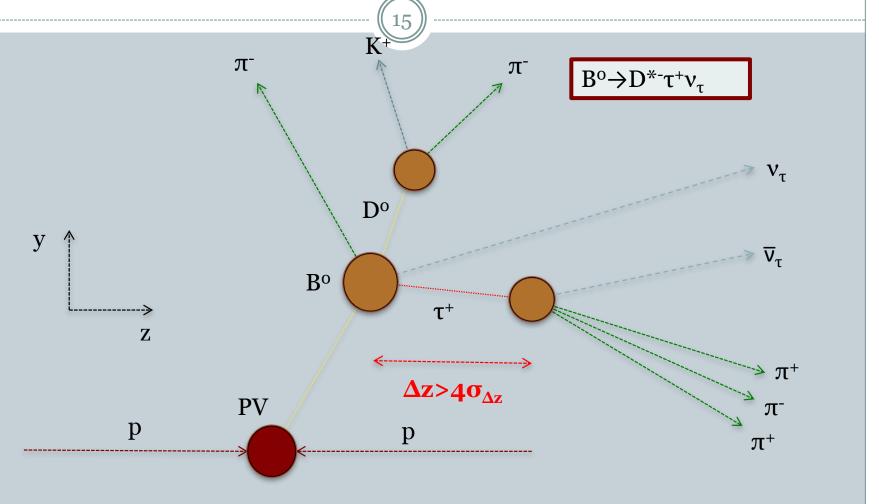
The initial very large background

- 13
- The D* $\tau\nu$ decay, with τ going into 3 pions (it can also be $3\pi + \pi^0$) leads to a D* $3\pi (+X)$ final state
- Nothing is more common than a $D^*3\pi$ (+X) final state in a typical B decay :

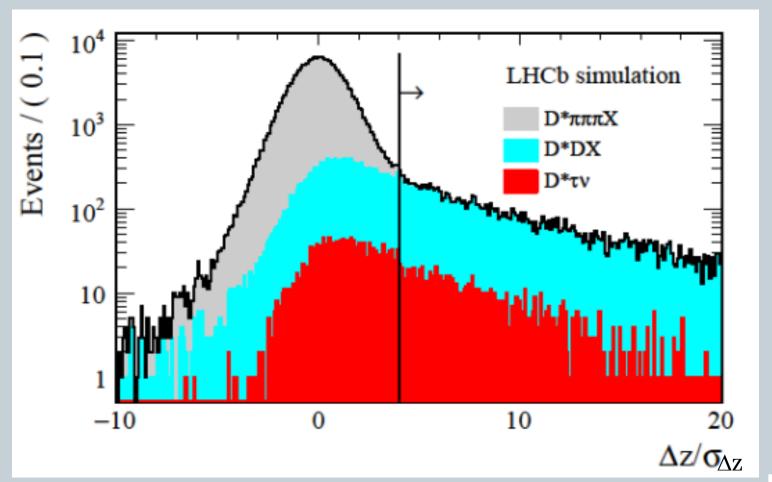
$$BR(B^o \rightarrow D^*3\pi + X)/BR(B^o \rightarrow D^*\tau \nu; \tau \rightarrow 3\pi)_{SM} \sim 100$$


A very strong background suppression method is absolutely needed:

The DETACHED VERTEX METHOD


Vertex topology of the usual B decay

Selection: detached vertex



Selection: the detached vertex method LHCb-PAPER-2017-017, in preparation

The second level of background

- After the 4σ cut in $\Delta z/\sigma_{\Delta z}$, the prompt background is suppressed by ~3 orders of magnitude!!!!!
- The second level of background consists of B decays where the 3π vertex is transported away from the B° vertex by a charm carrier: D_s , D^+ or D^o (in that order of importance)
- This background is smaller :

BR(B°->D* 'D'; 'D' $\rightarrow 3\pi X$)/ BR(B° $\rightarrow D^* \tau \nu; \tau \rightarrow 3\pi)_{SM} \sim 10$

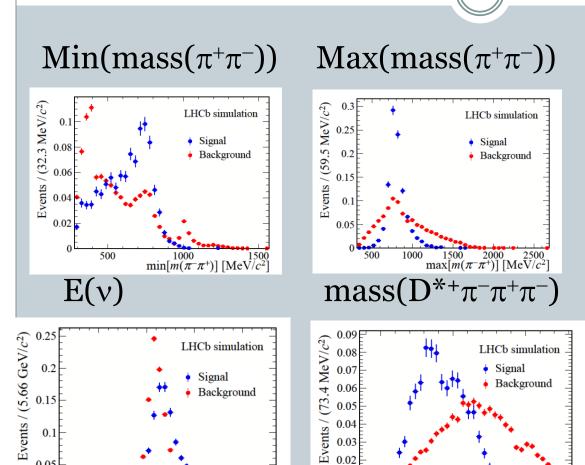
• ... and we can suppress it strongly

Analysis workflow

- Lo Trigger: LoTOS OR (LoHadron OR LoMuon)TIS
- HLT2: (Topo OR D*) AND Trigalltopo
- Stripping: B2toDstarTauNu stripping line (S21)
- Cleaning cuts (secondary vertex, one_combi, no_charm,...)
- Detached/normal topology for signal/normalization
- Charged isolation, tighter PID cut on the « negative »pion
- Fit of the reconstructed $D_{\rm s}$ sample using the exclusive 3π decay channel
- Low BDT sample (50% of the data sample) : D_s decay model fit
- High BDT final fit with D_s decay model parameters

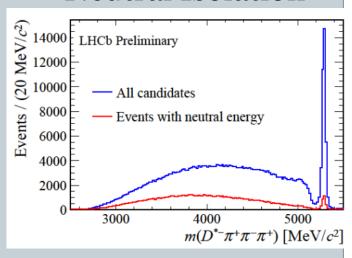
The inclusive D_s decays in 3 pions

- The W \rightarrow cs decays can produce a single meson \mathbf{D}_{s} , very often in an excited state D_s*, D_s** or two particles DoK-, D+Ko, and their excited counterparts
- Although the exclusive $D_s \rightarrow 3\pi$ is small (1% BR), the D_s is an amazingly rich source of $3\pi + X$ final states (~25%!)
- We classify hadronic D_s decays into 3 pions in 4 categories
 - \circ $\eta \pi X (\eta \pi, \eta \rho)$


 $\eta'\pi X(\eta'\pi,\eta'\rho)$

- \circ $(\phi/\omega) \pi X (\phi/\omega \pi, \phi/\omega \rho)$ M3 π , where M can be $\nu, K^0, \eta, \eta', \omega, \phi$
- We do not have precise BR for all of these (some well measured, some poorly, some not at all)
- The inclusive BR of Ds into 3 pions that could constraint all of these is not known either
- We extract these informations from LHCb data in a D_s enriched region (BDT<-0.075) (~90% D_s)

The anti-D_s BDT : 3π dynamics, partial reconstruction and isolation


 $m(D^{*-}\pi^{+}\pi^{-}\pi^{+})$ [MeV/ c^{2}]

0.0

3000

Neutral Isolation

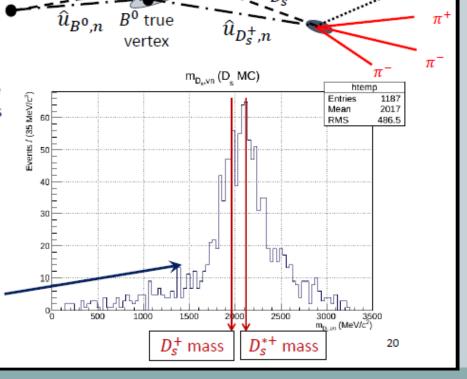
LHCb-PAPER-2017-017, in preparation

 $E(v) [{
m GeV}/c^2]$

0.05

Background Partial reconstruction

B⁰ rec. vertex

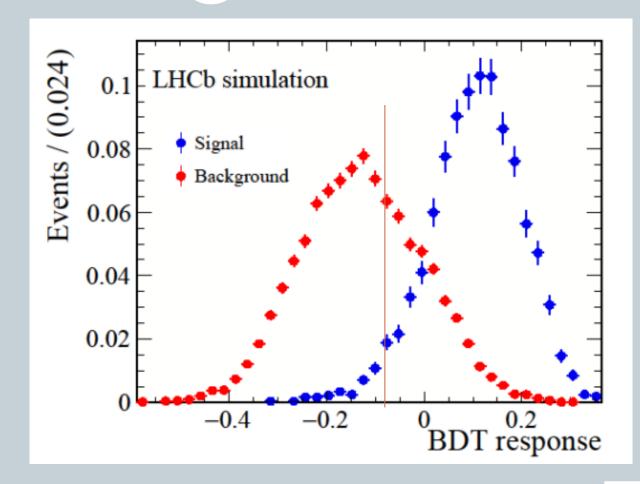

For $B^0 \to D^{*-}D_s^+$: $|\overrightarrow{p_B}| \hat{u}_B = |\overrightarrow{p_{D_s}}| \hat{u}_{D_s} + \overrightarrow{p_{D*}}$

After some vectorial algebra \rightarrow get magnitude of B^0 and D_s^+ momenta

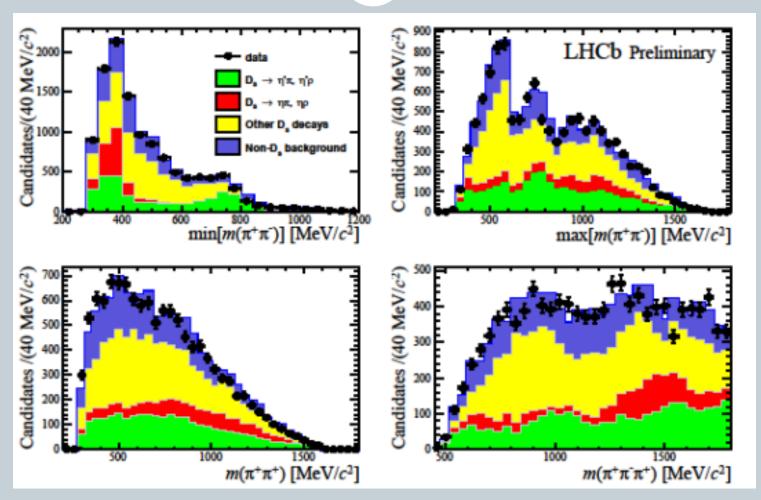
First approximation $\rightarrow \hat{u}_{D_s}$ is the 3π direction

Apply a **correction** to B⁰ vertex due to the presence of neutral particles in D_s^+ decay \rightarrow **parametrization** of this correction as function of 3π mass on $D^{*-}D_s^+$ MC \rightarrow get B^0 and D_s^+ momenta at a **next-level of approximation**

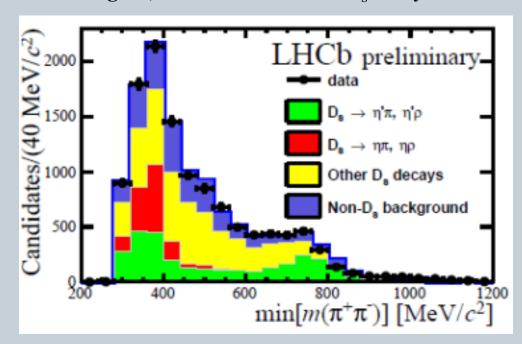
Reconstruction of D_s^+ mass, with nominal B^0 and D^{*-} masses values



BDT results


- Good separation obtained
- Allows to select an high purity sample at high efficiency
- Charged Isolation and PID cuts are also required to select candidates

The D_s decay model fit at low BDT


The importance of the « D_s-o-meter »

- The minimum $\pi^+\pi^-$ mass contains critical information about the rate of η and η ' decays
- At low mass, only η and η ' (red, green) contributions are peaking

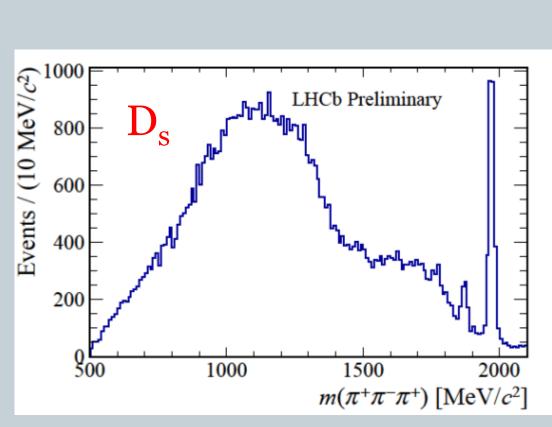
$$\eta \rightarrow \pi^+\pi^- \pi^\circ$$
 and $\eta' \rightarrow \eta \pi^+\pi^-$

- At the ρ mass where the signal lives, only η' contributes ($\eta' \rightarrow \rho \gamma$)
- Using the low BDT region, one constraints the D_s decay model to be used at high BDT

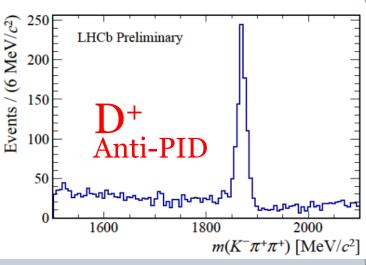
Charged Isolation and PID

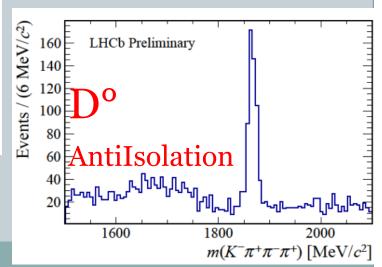
- LHCb software can attach a track passing nearby a vertex: very useful to tag D° decays in $K3\pi$
- Necessity to reject also 5 prong D_s decays which are frequent when there is the combined presence of an η and η ' presence in the decay chain.
- Very efficient for D° decays which is often accompanied by 2 charged kaons, less for the D+
- To keep the background low, we request only events with 1 combination
- Important to reject $K^-\pi^+\pi^+$ events where the « negative » Kaon is taken as a pion
- Can be of course used a good control sample for D⁺ meson
- The presence of $\pi\pi$ l events where the lepton from a semileptonic D_s decays is taken as pion

The inclusive D° and D+ decays in 3 pions


The situation is simpler in D⁺ and D^o decays whose main 3π decay mode is thru the $K3\pi$ decay

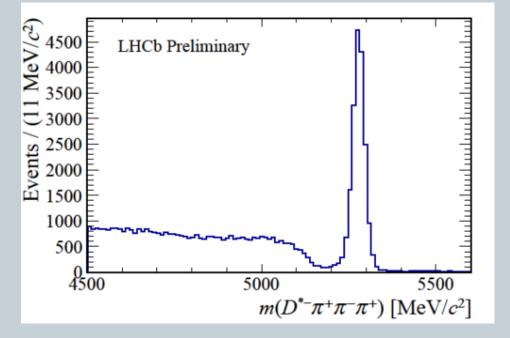
- For the D°, the inclusive 4 prongs BR constrains strongly the rate of 3π events
- o Unfortunately, this constraint does not exist for the D⁺ mesons, $K3\pi\pi^{\circ}$ is poorly known, the inclusive BR is not measured
- We let the D⁺ component float in the fit
- (Note: For all these D decays, contacts have been established with BES-3 collaboration to measure these numbers in the near future)


The control channels D_s, D^o, and D⁺


LHCb-PAPER-2017-017, in preparation

Run 1, 3 fb⁻¹

LAL Orsay seminar, June 21 2017

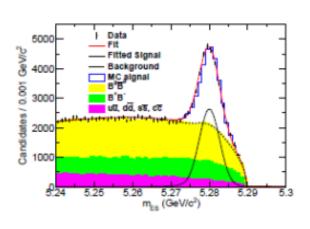


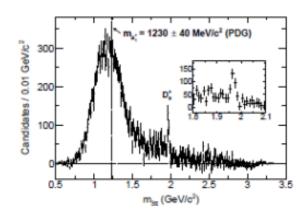
Importance of the normalization channel $B^{\circ} \rightarrow D^{*}3\pi$

• Normalization mode as similar as possible to the signal to cancel production yield, BR uncertainties and systematics linked to trigger, PID, first selection cuts

Run 1, 3 fb⁻¹

17k events





BABAR measurement of BR($B^o \rightarrow D^*3\pi$) (Phys.Rev. D94 (2016), 091101)

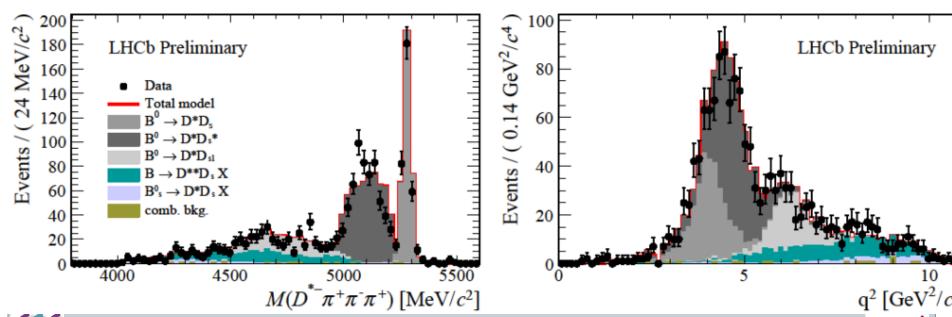
- In PDG 2014 BR($B^{\circ} \rightarrow D^{*}3\pi$) known only to 11% precision \odot
- New BABAR analysis with full available statistics

 $BR(B^{\circ} \rightarrow D^{*}3\pi) = 0,726 \pm 0.011 \pm 0.031)\%$

There is also an LHCb result of $D*3\pi/D*\pi$ not included in the PDG Phys. Rev. D87,092001 (2013)

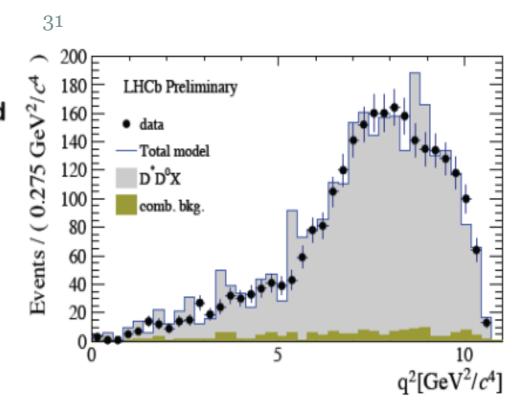
Dominated by systematics errors Good precision of 4.3%!!

BELLE: Could you (re)measure this very precisely as well!!!


Source	Uncertainty (%)
Fit algorithm and peaking backgrounds	2.4
Track-finding	2.0
$\pi^{+}\pi^{-}\pi^{+}$ invariant-mass modeling	1.7
$D^{\star -}$ and \overline{D}^0 decay branching fractions	1.3
$\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$ decay branching fraction	1.2
K ⁺ identification	1.1
Signal efficiency MC statistics	0.9
Sideband subtraction	0.7
$B\overline{B}$ counting	0.6
Total	4.3

D^*D_s+X events with reconstructed D_s in 3π

- Clear separation obtained of the $D_{s,}$ D_{s}^{*} and D_{s}^{**} components
- Ratios ~1:2:2 (only 20% of D_s come directly from B)

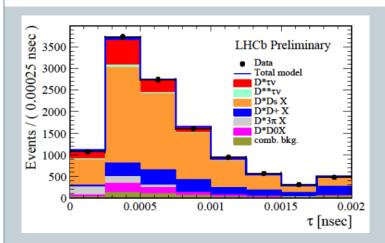


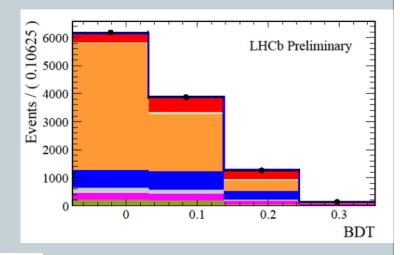
universite

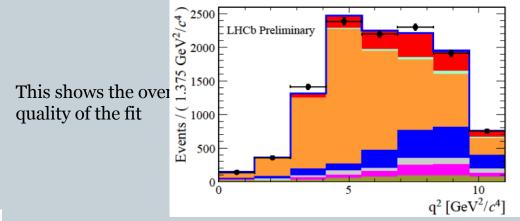
$X_b \rightarrow D^*D^0X$ control sample

- X_b→D*D⁰X decays can be isolated by selecting exclusive D⁰→K⁻3π decays (kaon recovered using isolation tools).
- A correction to the q² distribution is applied to the simulation to match the data.

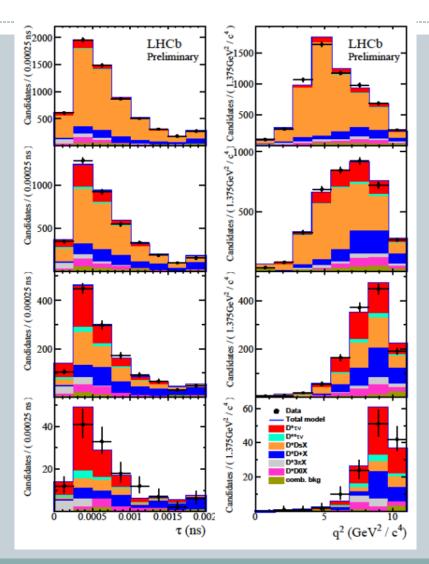
The fit model


- 3D extended maximum likelihood fit to data.
- Fit components described by templates obtained from simulation (and corrected from control samples):
 - q² (8 bins).
 - 3π decay time (8 bins): important to separate D⁺ component (large lifetime).
 - BDT (4 bins).


Model components		
$\tau \rightarrow \pi \pi^{+} \pi \nu_{\tau}$	Ratio constrained using known BR and	
$\tau {\longrightarrow} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^0 \nu_{\tau}$	efficiencies.	
$X_b \rightarrow D^{**} \tau v$	Ratio to signal fixed to 0.11 ± 0.04 from theory.	
$\mathbf{B}^0 \rightarrow \mathbf{D}^{\star} - \mathbf{D}_{s}^{+}$		
$\mathbf{B}^0 \rightarrow \mathbf{D}^{\star} - \mathbf{D}_{s}^{\star}$	Relative yields	
$\mathbf{B}^0 \rightarrow \mathbf{D}^* - \mathbf{D}_{s0}^{*+}$	constrained from	
$\mathbf{B}^0 \rightarrow \mathbf{D}^* - \mathbf{D}_{s1}$	$X_b \rightarrow D^*D_s^*X$ control sample.	
$\mathbf{B}_{s}^{0} \rightarrow \mathbf{D}^{\star} \cdot \mathbf{D}_{s}^{+} \mathbf{X}$		
$\mathbf{B} \rightarrow \mathbf{D}^{\star \star} \mathbf{D}_{s}^{+} \mathbf{X}$		
$X_b \rightarrow D^+ D^+ X$		
$X_b {\rightarrow} D^{*} D^0 X$	Yields constrained from control samples.	
$\mathbf{X_b} \!\!\to\!\! \mathbf{D}^* \!$		



The 3 fit projections (q², lifetime and BDT)



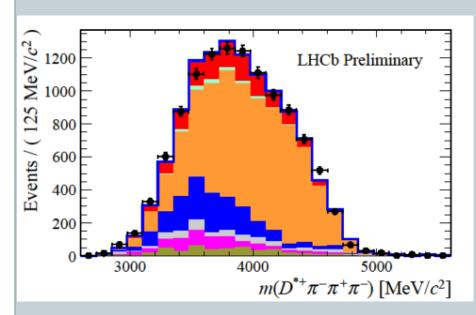
Fit results

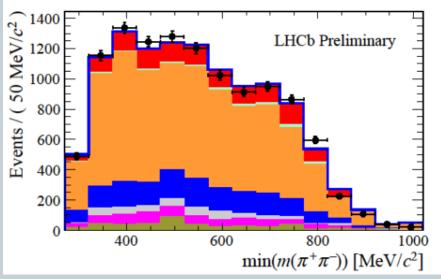
LHCb-PAPER-2017-017, in preparation

(34)

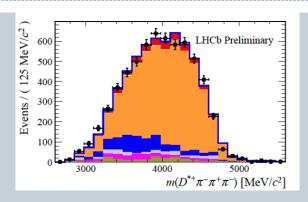
- The 3D template binned likelihood fit results are presented for the lifetime and q² in four BDT bins.
- The increase in signal (red)
 purity as function of BDT is
 very clearly seen, as well as the
 decrease of the D_s component
 (orange)
- The dominant background at high BDT becomes the D⁺ component (blue), with its distinctive long lifetime.
- The overall χ^2 per dof is 1.15

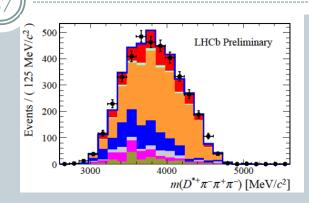
Systematic uncertainties table

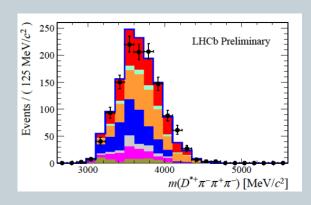


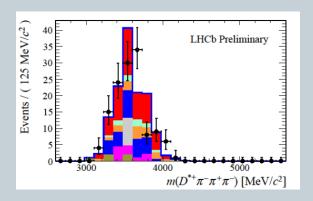

Contribution	Value %
Simulated sample size	4.7
Signal modeling	1.8
$D^{**}\tau\nu$ and $D_s^{**}\tau\nu$ feed-downs	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D_s^+X$, $B \to D^{*-}D^+X$, $B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \to D^* 3\pi X$ background	2.8
Empty bins in templates	1.3
Efficiency ratio	3.9
Total internal uncertainty	8.9
$\mathcal{B}(B^0 \to D^*3\pi)$ and $\mathcal{B}(B^0 \to D^*\mu\nu_\mu)$	4.5

A post fit projection of variables not used in the fit mass: $D^* - \pi^+ \pi^- \pi^+$ and $min(\pi^+ \pi^-)$









Post-fit projection of D* $\pi^+\pi^-\pi^+$ mass for 4 BDT bins

LHCb Preliminary Results

LHCb-PAPER-2017-017, in preparation

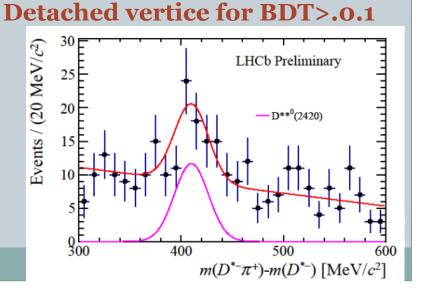
(38)

 $BR(B^{\circ} \rightarrow D^{*}\tau v)/BR(B^{\circ} \rightarrow D^{*}3\pi) = 1.93 \pm 0.13(stat) \pm 0.17(syst)$

BR(B° \to D*+τν)=(1.39±0.09(stat) ±0.12(syst)±0.06(ext))% Using for BR(B° \to D*3π)the new PDG 2017 WA of 0,721±0.029

to be compared with the PDG(2017) (1.67±0.13)% New (naive) average BR(B° \rightarrow D* $\tau\nu$) = (1.56±0,10)% R(D*)=0.285±0.019(stat) ±0.025(syst) ±0.013(ext) Using the HFLAV BR(B° \rightarrow D* $\mu\nu$)=(4,88±0,10)%

Experiment	Method	N evts B° →D*τν
BABAR	Leptonic_hadronic tag	245±27
BELLE	Leptonic hadronic tag	0,4x500=200
BELLE	Single pi hadronic tag	88 ±11
LHCb	3π Hadronic	1273±95


D** cross check

- $B^{\circ} \rightarrow D^{**} \tau \nu$ and $B^{+} \rightarrow D^{**\circ} \tau \nu$ constitute potential feeddown to the signal
- D**(2420) ° is reconstructed using its decay to D*+ π as a cross check
- The observation of the D**(2420)° peak allows to compute the D** 3π BDT distribution and to deduce a D** $\tau\nu$ upper limit with the following assumption.
 - $D^{**\circ}\tau v = D^{**}(2420)^{\circ}\tau v$ (no sign of $D^{**}(2460)^{\circ}$
 - $D^{**+}\tau v = D^{**o}\tau v$
- This upper limit is consistent with the theoretical prediction
- Subtraction in the signal of 0.11±0.04 due to $D^{**}\tau\nu$ events leading to an

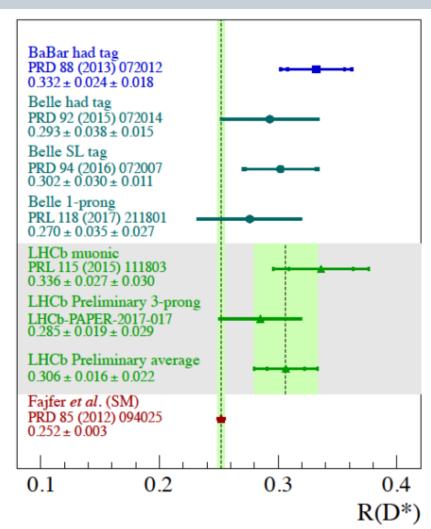
error of 2.3% All detached vertices

LHCb average and comparison with WA

LHCb-PAPER-2017-017, in preparation

• This analysis :

 $R(D^*)=0.285\pm0.019(stat)\pm0.028(syst)$


• Reminder muonic R(D*)=

 $0.336 \pm 0.027 \pm 0.030$

- O 2.1 σ above SM, 0.6 σ above WA
- Preliminary LHCb average

 0.306 ± 0.027

- 2.1 σ above SM, 0.1 σ above WA
- Naive new WA 0.305 ±0.015
 - 3.4 σ above SM
- Naive R(D),R(D*) 4.08 σ
- This results pulls down WA a bit but increases slightly the discrepancy!!

Prospects

- For the hadronic R(D*) LHCb measurement, the inclusion of Run2 data will allow to multiply the statistics by a factor 3
 - Higher bb cross section, better trigger
 - o If WA is correct, The discrepancy with SM could increase significanlty
- Several Rs will be measured in the coming year: $R(\Lambda_c)$, $R(J/\psi)$,...
- The details of the internal event structure will be scrutinized
- Other R(D*) measurements from BABAR and BELLE still possible

The semitauonic program

- 1. Vertical extension of R(D*)
 - R(D*) measurement with Run2 data
 - Extraction of internal quantities, most notably q2, search for NP effects using our high stats high purity sample
 - Measure R(D**°(2420) per se and to constraint D** feed-down
- 2. Horizontal extension of R(D*)
 - \circ R(Λ_c) (Victor PhD thesis to be finished in September 2018)
 - \circ R(J/ ψ)
 - \circ R(D⁺),R(D°)
 - \circ R(D_s)
 - o V_{ub}

Precision Goals for Run1+Run2 data

- Run2 = 2015+2016 (already available) + maybe some fraction of 2017
- $D*D_s$ (Run2)/D*Ds(Run1)~3
- Statistical precision ~4%-3%
- Internal systematic precision ~5% (need more data from BES)
- External systematic precision ~3% (need more data from BELLE-1)

The semitauonic workshop

44

To be held in Orsay Nov 13-15 2017

Open sessions:
Monday Nov 13
(afternoon)Tuesday Nov 14 (all day)

Conclusions

• The analysis to measure the ratio $BR(B^{\circ} \rightarrow D^{*}\tau \nu)/BR(B^{\circ} \rightarrow D^{*}3\pi)$ using the 3 π hadronic decay of the τ lepton has been performed at LHCb (Preliminary)

$$R(D^*)=0.285\pm0.019(stat)\pm0.025(syst)\pm0.013(ext)$$

New preliminary LHCb average of $R(D^*)=0.306\pm0.026$

- This analysis was made possible due to the unique LHCb capabilities for separating secondary and tertiary vertices with unprecedented precision
- The R(D*) result, the first one to use 3π final state, is one of the best single measurements, having the smallest statistical error.
- It is compatible both with the SM prediction and with the present WA. However, it slightly increases the discrepancy of the WA wrt to the SM
- This method **paves the way** for the measurements of
 - R(D*) using the full Run2 data with a goal of 3% statistical precision
 - O All other R(X), with R(Λ_c) and R(J/ψ) currently underway
 - The detailed internal characteristics of the events due to the unique possibility to isolate a **high statistics high purity sample** of D*τν events

Backup

The 2012 BABAR results statistics

Decay	N_{sig}	$N_{ m norm}$	Estg/€norm	$\mathcal{R}(D^{(\star)})$	$\mathcal{B}(B \to D^{(\star)} \tau \nu)$ (%)	Σ_{stat}	Σ_{tot}
$B^- \rightarrow D^0 \tau^- \overline{\nu}_{\tau}$	314 ± 60	1995 ± 55	0.367 ± 0.011	$0.429 \pm 0.082 \pm 0.052$	$0.99 \pm 0.19 \pm 0.13$	5.5	4.7
$B^- \rightarrow D^{*0} \tau^- \overline{\nu}_{\tau}$	639 ± 62	8766 ± 104	0.227 ± 0.004	$0.322\pm0.032\pm0.022$	$1.71\pm0.17\pm0.13$	11.3	9.4
$\overline{B}{}^{0} \rightarrow D^{+}\tau^{-}\overline{\nu}_{\tau}$	177 ± 31	986 ± 35	0.384 ± 0.014	$0.469 \pm 0.084 \pm 0.053$	$1.01\pm0.18\pm0.12$	6.1	5.2
$\overline{B}^0 \rightarrow D^{*+} \tau^- \overline{\nu}_{\tau}$	245 ± 27	3186 ± 61	0.217 ± 0.005	$0.355\pm0.039\pm0.021$	$1.74 \pm 0.19 \pm 0.12$	11.6	10.4
$\overline{B} \rightarrow D\tau^-\overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	0.372 ± 0.010	$0.440 \pm 0.058 \pm 0.042$	$1.02\pm0.13\pm0.11$	8.4	6.8
$\overline{B} \rightarrow D^*\tau^-\overline{\nu}_{\tau}$	888 ± 63	11953 ± 122	0.224 ± 0.004	$0.332\pm0.024\pm0.018$	$1.76 \pm 0.13 \pm 0.12$	16.4	13.2

$$N(B^{o}\rightarrow D^{*+}\tau\nu)= 245\pm27 \text{ events}$$

 $BR(B^{o}\rightarrow D^{*+}\tau\nu)= (1.76\pm0.19\pm0.12)\%$

Summary of the various efficiencies

(48)

Category	$B^0 \rightarrow D^{\bullet} 3\pi$	Signal		Rel. eff.	Rel. eff. signal	
		$\tau \to 3 \; \pi$	$\tau \rightarrow 3\pi\pi^0$	D^* 3π	$\tau\to3\pi$	$\tau \rightarrow 3\pi\pi^0$
Acceptance (%)	14.65	15.47	14.64			
After stripping	1.382	0.826	0.729			
After cleaning	0.561	0.308	0.238	40.6	37.3	32.6
After trigger requirements	0.484	0.200	0.143	86.3	65.1	59.9
After vertex selection	0.270	0.0796	0.0539	55.8	39.8	37.8
After Charged isolation	0.219	0.0613	0.0412	81.2	77.0	76.3
After DO sideband removal	0.207	0.0583	0.0393	94.5	95.3	95.5
After MW cut	_	0.0574	0.0390	-	98.4	99.1
After BDT cut	_	0.0541	0.0292	-	94.1	74.8
After PID cut	0.136	0.0392	0.0216	65.8	72.4	74.1
Overall efficiency (%)	19.97×10^{-3}	6.08×10^{-3}	3.23×10^{-3}			
Analysis efficiency (%)	9.86	4.76	2.95			

The sources of the different efficiencies between signal and normalization have been studied in great detail. The major contribution come from the softer D*(slow pion) and 3π p and p_T spectrum for the signal induced by the presence of two extra neutrinos

