Physique au LHC: théorie Ecole doctorale Orsay

Abdelhak DJOUADI (LPT Orsay)

• Le Modèle Standard

1. Le Modèle Standard de la physique des particules

2. Statut du MS

3. Contraintes sur $M_{\rm H}$ dans le MS

4. Problèmes et insuffisances du MS

• Tests du MS au LHC

• Le Higgs au LHC

• SUSY au LHC

• Nouvelle physique au LHC

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.1/25

1. The Standard Model

The SM is based on a local gauge symmetry: invariance under $G_{SM}\equiv SU(3)_C\times SU(2)_L\times U(1)_Y$

• The group $SU(3)_C$ describes the strong force:

- interaction between q, q , q which are SU(3) triplets
- mediated by 8 gluons, G^a_μ corresponding to 8 generators of $SU(3)_C$ Gell-Man 3×3 matrices: $[T^a, T^b] = if^{abc}T_c$ with $Tr[T^aT^b] = \frac{1}{2}\delta_{ab}$ - asymptotic freedom: interaction "weak" at high energy, $\alpha_s = \frac{g_s^2}{4\pi} \ll 1$ The Lagrangian of the theory is given by: $\mathcal{L}_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + i\sum_i \bar{q}_i(\partial_\mu - ig_sT_aG^a_\mu)\gamma^\mu q_i(-\sum_i m_i \bar{q}_i q_i)$ with $G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_s f^{abc}G^b_\mu G^c_\nu$ - fermion gauge boson couplings : $-g_i \overline{\psi} V_\mu \gamma^\mu \psi$
- triple gauge boson couplings : $ig_i \operatorname{Tr}(\partial_{\nu}V_{\mu} \partial_{\mu}V_{\nu})[V_{\mu}, V_{\nu}]$
- quartic gauge boson couplings : $\frac{1}{2}g_i^2 \operatorname{Tr}[V_{\mu},V_{
 u}]^2$

1. The SM: brief introduction

• $SU(2)_L \times U(1)_Y$ describes the electroweak interaction: between the three familles of quarks and leptons $\mathbf{I_{f}^{3L,3R}} = \pm \frac{1}{2}, \mathbf{0} \quad \Rightarrow \mathbf{L} = \begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{\mathbf{L}}, \mathbf{R} = \mathbf{e_{R}^{-}}, \mathbf{Q} = \begin{pmatrix} u \\ e \end{pmatrix}_{\mathbf{L}}, \mathbf{u_{R}}, \mathbf{d_{R}}$ $\mathbf{Y_{f}} = \mathbf{2Q_{f}} - \mathbf{2I_{f}^{3}} \Rightarrow \mathbf{Y_{L}} = -\mathbf{1}, \mathbf{Y_{R}} = -\mathbf{2}, \mathbf{Y_{Q}} = \frac{1}{3}, \mathbf{Y_{u_{R}}} = \frac{4}{3}, \mathbf{Y_{d_{R}}} = -\frac{2}{3}$ Same holds for the two other generations: $\mu, \nu_{\mu}, \mathbf{c}, \mathbf{s}; \ \tau, \nu_{\tau}, \mathbf{t}, \mathbf{b}$. There is no $\nu_{\mathbf{R}}$ (and neutrinos are and stay exactly massless)! – mediated by the \mathbf{W}_{μ} (isospin) and \mathbf{B}_{μ} (hypercharge) gauge bosons the gauge bosons, corresp. to generators, are exactly massless $\mathbf{T}^{\mathbf{a}} = \frac{1}{2} \tau^{\mathbf{a}}; \quad [\mathbf{T}^{\mathbf{a}}, \mathbf{T}^{\mathbf{b}}] = \mathbf{i} \epsilon^{\mathbf{abc}} \mathbf{T}_{\mathbf{c}} \text{ and } [\mathbf{Y}, \mathbf{Y}] = \mathbf{0}$ Lagrangian simple: with fields strenghs and covariant derivatives $\mathbf{W}_{\mu\nu}^{\mathbf{a}} = \partial_{\mu} \mathbf{W}_{\nu}^{\mathbf{a}} - \partial_{\nu} \mathbf{W}_{\mu}^{\mathbf{a}} + \mathbf{g}_{2} \epsilon^{\mathbf{abc}} \mathbf{W}_{\mu}^{\mathbf{b}} \mathbf{W}_{\nu}^{\mathbf{c}}, \mathbf{B}_{\mu\nu} = \partial_{\mu} \mathbf{B}_{\nu} - \partial_{\nu} \mathbf{B}_{\mu}$ $\mathbf{D}_{\mu}\psi = \left(\partial_{\mu} - \mathbf{ig}\mathbf{T}_{\mathbf{a}}\mathbf{W}_{\mu}^{\mathbf{a}} - \mathbf{ig}'\frac{\mathbf{Y}}{2}\mathbf{B}_{\mu}\right)\psi, \ \mathbf{T}^{\mathbf{a}} = \frac{1}{2}\tau^{\mathbf{a}}$ $\mathcal{L}_{\mathrm{SM}} = -\frac{1}{4} \mathbf{W}^{\mathbf{a}}_{\mu
u} \mathbf{W}^{\mu
u}_{\mathbf{a}} - \frac{1}{4} \mathbf{B}_{\mu
u} \mathbf{B}^{\mu
u} + \bar{\mathbf{F}}_{\mathbf{Li}} \, \mathbf{i} \mathbf{D}_{\mu} \gamma^{\mu} \, \mathbf{F}_{\mathbf{Li}} + \bar{\mathbf{f}}_{\mathbf{Ri}} \, \mathbf{i} \mathbf{D}_{\mu} \gamma^{\mu} \, \mathbf{f}_{\mathbf{Ri}}$ Ecole doctorale Orsay, 14–18/04/08 Physiaue au LHC – A. Djouadi – p.3/25

1. The Higgs in the SM: the potential

But if gauge boson and fermion masses are put by hand in \mathcal{L}_{SM} – $\frac{1}{2}M_V^2 V^{\mu}V_{\mu}$ and/or $m_f \bar{f}_L f_R$ terms: breaking of gauge symmetry. We need a less "brutal" way to generate particle masses in the SM. In the SM, for the mechanism of spontaneous EW symmetry breaking, \Rightarrow introduce a doublet of complex scalar fields $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ with $Y_{\Phi} = +1$

with a Lagrangian that is invariant under $SU(2)_{\mathbf{L}} \times U(1)_{\mathbf{Y}}$

$$\mathcal{L}_{\mathbf{S}} = (\mathbf{D}^{\mu} \mathbf{\Phi})^{\dagger} (\mathbf{D}_{\mu} \mathbf{\Phi}) - \mu^{2} \mathbf{\Phi}^{\dagger} \mathbf{\Phi} - \lambda (\mathbf{\Phi}^{\dagger} \mathbf{\Phi})^{2}$$

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.4/25

1. The Higgs in the SM: the physical fields

To obtain the physical states, write \mathcal{L}_S with the true vacuum:

• Write Φ in terms of four fields $\theta_{1,2,3}(x)$ and H(x) at 1st order:

$$\Phi(\mathbf{x}) = \mathbf{e}^{\mathbf{i}\theta_{\mathbf{a}}(\mathbf{x})\tau^{\mathbf{a}}(\mathbf{x})/\mathbf{v}} \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{H}(\mathbf{x}) \end{pmatrix} \simeq \frac{1}{\sqrt{2}} \begin{pmatrix} \theta_{\mathbf{2}} + \mathbf{i}\theta_{\mathbf{1}} \\ \mathbf{v} + \mathbf{H} - \mathbf{i}\theta_{\mathbf{3}} \end{pmatrix}$$

• Make a gauge transformation on Φ to go to the unitary gauge:

$$\Phi(\mathbf{x}) \to e^{-\mathbf{i}\theta_{\mathbf{a}}(\mathbf{x})\tau^{\mathbf{a}}(\mathbf{x})} \Phi(\mathbf{x}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{H}(\mathbf{x}) \end{pmatrix}$$

• Then fully develop the term $|\mathbf{D}_{\mu} \Phi)|^2$ of the Lagrangian \mathcal{L}_S : $|\mathbf{D}_{\mu}\Phi)|^{2} = \left| \left(\partial_{\mu} - \mathbf{i}\mathbf{g}_{1}\frac{\tau_{\mathbf{a}}}{2}\mathbf{W}_{\mu}^{\mathbf{a}} - \mathbf{i}\frac{\mathbf{g}_{2}}{2}\mathbf{B}_{\mu} \right) \Phi \right|^{2}$ $= \frac{1}{2} (\partial_{\mu} \mathbf{H})^{2} + \frac{1}{8} \mathbf{g}_{2}^{2} (\mathbf{v} + \mathbf{H})^{2} |\mathbf{W}_{\mu}^{1} + \mathbf{i} \mathbf{W}_{\mu}^{2}|^{2} + \frac{1}{8} (\mathbf{v} + \mathbf{H})^{2} |\mathbf{g}_{2} \mathbf{W}_{\mu}^{3} - \mathbf{g}_{1} \mathbf{B}_{\mu}|^{2}$ • Define the new fields \mathbf{W}^\pm_μ and \mathbf{Z}_μ [\mathbf{A}_μ is the orthogonal of \mathbf{Z}_μ]: $\mathbf{W}^{\pm} = \frac{1}{\sqrt{2}} (\mathbf{W}^{1}_{\mu} \mp \mathbf{W}^{2}_{\mu}) \;, \; \mathbf{Z}_{\mu} = \frac{\mathbf{g}_{2} \mathbf{W}^{3}_{\mu} - \mathbf{g}_{1} \mathbf{B}_{\mu}}{\sqrt{\mathbf{g}_{2}^{2} + \mathbf{g}_{1}^{2}}} \;, \; \mathbf{A}_{\mu} = \frac{\mathbf{g}_{2} \mathbf{W}^{3}_{\mu} + \mathbf{g}_{1} \mathbf{B}_{\mu}}{\sqrt{\mathbf{g}_{2}^{2} + \mathbf{g}_{1}^{2}}}$ $\sin^2 \theta_{\mathbf{W}} \equiv \mathbf{g}_2 / \sqrt{\mathbf{g}_2^2 + \mathbf{g}_1^2} = \mathbf{e}/\mathbf{g}_2$

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.5/25

1. The Higgs in the SM: the masses

- And pick up the terms which are bilinear in the fields ${f W}^{\pm}, {f Z}, {f A}$: $\mathbf{M}_{\mathbf{W}}^{2}\mathbf{W}_{\mu}^{+}\mathbf{W}^{-\mu}+rac{1}{2}\mathbf{M}_{\mathbf{Z}}^{2}\mathbf{Z}_{\mu}\mathbf{Z}^{\mu}+rac{1}{2}\mathbf{M}_{\mathbf{A}}^{2}\mathbf{A}_{\mu}\mathbf{A}^{\mu}$ \Rightarrow 3 degrees of freedom for W^{\pm}_{L}, Z_{L} and thus $M_{W^{\pm}}, M_{Z}$: $M_W = \frac{1}{2}vg_2$, $M_Z = \frac{1}{2}v\sqrt{g_2^2 + g_1^2}$, $M_A = 0$, with the value of the vev given by: $v=1/(\sqrt{2}G_F)^{1/2}\sim 246~{\rm GeV}.$ \Rightarrow The photon stays massless, $U(1)_{QED}$ is preserved. • For fermion masses, use <u>same</u> doublet field Φ and its conjugate field $ilde{\Phi}=i au_2\Phi^*$ and introduce $\mathcal{L}_{
m Yuk}$ which is invariant under SU(2)xU(1): $\mathcal{L}_{Yuk} = -\mathbf{f}_{e}(\bar{\mathbf{e}}, \bar{\nu})_{L} \Phi \mathbf{e}_{R} - \mathbf{f}_{d}(\bar{\mathbf{u}}, \bar{\mathbf{d}})_{L} \Phi \mathbf{d}_{R} - \mathbf{f}_{u}(\bar{\mathbf{u}}, \bar{\mathbf{d}})_{L} \tilde{\Phi} \mathbf{u}_{R} + \cdots$ $= -\frac{1}{\sqrt{2}} \mathbf{f}_{\mathbf{e}}(\bar{\nu}_{\mathbf{e}}, \bar{\mathbf{e}}_{\mathbf{L}}) \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{H} \end{pmatrix} \mathbf{e}_{\mathbf{R}} \cdots = -\frac{1}{\sqrt{2}} (\mathbf{v} + \mathbf{H}) \bar{\mathbf{e}}_{\mathbf{L}} \mathbf{e}_{\mathbf{R}} \cdots$ $\Rightarrow \mathbf{m_e} = \frac{\mathbf{f_e} \mathbf{v}}{\sqrt{2}}$, $\mathbf{m_u} = \frac{\mathbf{f_u} \mathbf{v}}{\sqrt{2}}$, $\mathbf{m_d} = \frac{\mathbf{f_d} \mathbf{v}}{\sqrt{2}}$

With same Φ , we have generated gauge boson and fermion masses, while preserving SU(2)xU(1) gauge symmetry (which is now hidden)!

What about the residual degree of freedom?

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.6/25

1. The Higgs in the SM: the Higgs boson

It will correspond to the physical spin–zero scalar Higgs particle, H. The kinetic part of H field, $\frac{1}{2}(\partial_{\mu}H)^{2}$, comes from $|D_{\mu}\Phi)|^{2}$ term. Mass and self-interaction part from $V(\Phi) = \mu^{2}\Phi^{\dagger}\Phi + \lambda(\Phi^{\dagger}\Phi)^{2}$: $V = \frac{\mu^{2}}{2}(0, v + H)(_{v+H}^{0}) + \frac{\lambda}{2}|(0, v + H)(_{v+H}^{0})|^{2}$

Doing the exercise you find that the Lagrangian containing H is, $\mathcal{L}_{H} = \frac{1}{2} (\partial_{\mu} H) (\partial^{\mu} H) - V = \frac{1}{2} (\partial^{\mu} H)^{2} - \lambda v^{2} H^{2} - \lambda v H^{3} - \frac{\lambda}{4} H^{4}$ The Higgs boson mass is given by: $M_{H}^{2} = 2\lambda v^{2} = -2\mu^{2}$.

The Higgs triple and quartic self–interaction vertices are:

 ${f g_{H^3}=3i\,M_H^2/v}\,,\;{f g_{H^4}=3iM_H^2/v^2}$

What about the Higgs boson couplings to gauge bosons and fermions? They were almost derived previously, when we calculated the masses:

$$\mathcal{L}_{\mathbf{M_V}} \sim \mathbf{M_V^2} (\mathbf{1} + \mathbf{H/v})^{\mathbf{2}} \ , \ \mathcal{L}_{\mathbf{m_f}} \sim -\mathbf{m_f} (\mathbf{1} + \mathbf{H/v})^{\mathbf{2}}$$

 $\Rightarrow \mathbf{g_{Hff}} = \mathbf{i}\mathbf{m_f}/\mathbf{v} \;,\; \mathbf{g_{HVV}} = -2\mathbf{i}\mathbf{M_V^2}/\mathbf{v} \;,\; \mathbf{g_{HHVV}} = -2\mathbf{i}\mathbf{M_V^2}/\mathbf{v^2}$

Since v is known, the only free parameter in the SM is $M_{\rm H}$ or $\lambda.$

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.7/25

1. SM physics: W/Z/H at high energies

Propagators of gauge and Goldstone bosons in a general ζ gauge:

• In unitary gauge, Goldstones do not propagate and gauge bosons have usual propagators of massive spin–1 particles (old IVB theory).

- \bullet At very high energies, $s\!\gg\!M_V^2$, an approximation is $M_V\!\sim\!0.$ The
- V_L components of V can be replaced by the Goldstones, $V_L \to \omega.$
- In fact, the electroweak equivalence theorem tells that at high energies, massive vector bosons are equivalent to Goldstones. In VV scattering e.g. $A(V_L^1 \cdots V_L^n \rightarrow V_L^1 \cdots V_L^{n'}) = (i)^n (-i)^{n'} A(w^1 \cdots w^n \rightarrow w^1 \cdots w^{n'})$ Thus, we simply replace V by w in the scalar potential and use w: $V = \frac{M_H^2}{2v} (H^2 + w_0^2 + 2w^+w^-)H + \frac{M_H^2}{8v^2} (H^2 + w_0^2 + 2w^+w^-)^2$

Physiaue au LHC – A. Djouadi – p.8/25

2. Status of the SM

The parameters of the SM at tree—level:

In the SM, there are 18 free parameters (+ $\theta_{\rm QCD} + \nu$ sector):

- 9 fermions masses, 4 CKM parameters (see below for details).
- 3 coupling g_s,g_2,g_1 and 2 parameters from scalar potential μ,λ More precise inputs, $\alpha_s, \alpha(M_Z^2), G_F, M_Z$ and M_H (unknown)

Weak interactions of fermions with gauge bosons

 $\mathcal{L}_{\rm NC} = e J_{\mu}^{\rm A} A^{\mu} + \frac{g_2}{\cos \theta_W} J_{\mu}^Z Z^{\mu} , \quad \mathcal{L}_{\rm CC} = \frac{g_2}{\sqrt{2}} (J_{\mu}^+ W^{+\mu} + J_{\mu}^- W^{-\mu})$ $J_{\mu}^A = Q_f \bar{f} \gamma_{\mu} f , \quad J_{\mu}^Z = \frac{1}{4} \bar{f} \gamma_{\mu} [\hat{v}_f - \gamma_5 \hat{a}_f] f , \quad J_{\mu}^+ = \frac{1}{2} \bar{f}_u \gamma_{\mu} (1 - \gamma_5) f_d$ $with \quad v_f = \frac{\hat{v}_f}{4s_W c_W} = \frac{2I_f^3 - 4Q_f s_W^2}{4s_W c_W} , \quad a_f = \frac{\hat{a}_f}{4s_W c_W} = \frac{2I_f^3}{4s_W c_W}$

3-families: complication in CC as current eigenstates \neq mass eigenstates connected by a unitary transformation: $(d', s', b') = V_{\text{CKM}}(d, s, b)$ $V_{\text{CKM}} \equiv 3 \times 3$ unitarity matrix; NC are diagonal in both bases (GIM). Parametrized by 3 angles and 1 CPV phase: tests at B-factories.

2. Status of the SM: precision tests

 M_W and $\sin^2 \theta_W$ predicted: $\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha (M_Z^2)}{2M_W^2 (1-M_W^2/M_Z^2)}$; $\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$ In fact, they are related by $\rho = \frac{M_W^2}{c_W^2 M_Z^2} \equiv 1$ at tree-level in the SM To have very precise predictions, include the radiative corrections:

The dominant correction is, besides $\Delta \alpha$, the one to the ho parameter

$$\rho = \frac{1}{1 - \Delta \rho} , \ \Delta \rho = \frac{\Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(0)}{M_Z^2} = \frac{3G_\mu m_t^2}{8\sqrt{2}\pi^2} - \frac{G_\mu M_W^2}{8\sqrt{2}\pi^2} \log \frac{M_H^2}{M_W^2} + \cdots$$

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.10/25

2. Status of the SM: high-precision data

- Z boson lineshape parameters at LEP1 ($\sqrt{
 m s}\sim {
 m M_Z}$): $M_Z, \Gamma_Z, \sigma(e^+e^-
 ightarrow {
 m hadrons})$
- Partial decay widths and asymmetries in Z decays at LEP1:

 $\Gamma(Z \to f\bar{f}) = \frac{2\alpha}{3} N_c M_Z(v_f^2 + a_f^2) , \ A_{FB}^f = \frac{3}{4} \frac{2a_e v_e}{v_e^2 + a_e^2} \frac{2a_f v_f}{v_f^2 + a_f^2}$

• Left-right polarized asymmetries in Z decays at SLC:

$$A_{LR} = \frac{2a_e v_e}{v_e^2 + a_e^2} , \ A_{LR/FB}^f = \frac{3}{4} \frac{2a_f v_f}{v_f^2 + a_f^2}$$

- W boson parameters: M_W and Γ_W at LEP2 and Tevatron.
- Other observables at low–energy: ν_e DIS, PV in Cs and Th ...
- Use top quark mass value from Tevatron $m_t = 171 \pm 2 \; {
 m GeV}$
- Use value of α_s from LEP and elsewhere: $\alpha_s = 0.1172 \pm 0.002$
- Use $\alpha(M_Z)$ with $\Delta \alpha = 0.028 \pm 0.00036$ from low–energy data

 \Rightarrow Very high precision tests of the SM at the quantum level: 1%–0.1%

SM describes precisely (almost) all available experimental data!

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.11/25

2. Status of the SM: high-precision tests

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02766	
$\begin{array}{c c} \Gamma_{z} \left[GeV \right] & 2.4952 \pm 0.0023 & 2.4957 \\ \sigma^{0}_{had} \left[nb \right] & 41.540 \pm 0.037 & 41.477 \\ R_{l} & 20.767 \pm 0.025 & 20.744 \\ A^{0,l}_{fb} & 0.01714 \pm 0.00095 & 0.01640 \\ A_{l}(P_{\tau}) & 0.1465 \pm 0.0032 & 0.1479 \\ R_{b} & 0.21629 \pm 0.00066 & 0.21585 \\ R_{c} & 0.1721 \pm 0.0030 & 0.1722 \\ A^{0,b}_{fb} & 0.0992 \pm 0.0016 & 0.1037 \\ A^{0,c}_{fb} & 0.0707 \pm 0.0035 & 0.0741 \\ A_{b} & 0.923 \pm 0.020 & 0.935 \\ A_{c} & 0.670 \pm 0.027 & 0.668 \\ A_{l}(SLD) & 0.1513 \pm 0.0021 & 0.1479 \\ \sin^{2}\theta^{lept}_{eff}(Q_{fb}) & 0.2324 \pm 0.0012 & 0.2314 \\ m_{W} \left[GeV \right] & 80.392 \pm 0.029 & 80.371 \\ \Gamma_{W} \left[GeV \right] & 2.147 \pm 0.060 & 2.091 \\ m_{t} \left[GeV \right] & 171.4 \pm 2.1 & 171.7 \\ \end{array}$	m _z [GeV]	91.1875 ± 0.0021	91.1874	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Г _z [GeV]	2.4952 ± 0.0023	2.4957	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.477	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _I	20.767 ± 0.025	20.744	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01640	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A _I (Ρ _τ)	0.1465 ± 0.0032	0.1479	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _b	0.21629 ± 0.00066	0.21585	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _c	0.1721 ± 0.0030	0.1722	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1037	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0741	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A _b	0.923 ± 0.020	0.935	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _c	0.670 ± 0.027	0.668	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A _l (SLD)	0.1513 ± 0.0021	0.1479	
m_W [GeV]80.392 ± 0.02980.371 Γ_W [GeV]2.147 ± 0.0602.091 m_t [GeV]171.4 ± 2.1171.7	$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
Γ_W [GeV]2.147 ± 0.0602.091 m_t [GeV]171.4 ± 2.1171.7	m _w [GeV]	80.392 ± 0.029	80.371	
m _t [GeV] 171.4 ± 2.1 171.7 ■	Γ _w [GeV]	2.147 ± 0.060	2.091	
	m _t [GeV]	171.4 ± 2.1	171.7	

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.12/25

2. Tests of the SM: gauge structure

WW production at at LEP2:

General CPC WWV coupling given by: $\mathcal{L}_{\text{eff}}^{WWV} \propto g_1^V V^{\mu} \left(W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu} \right) \\
+ \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{M_W^2} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^- \\
\text{In SM: } g_1^V = 1, \kappa_V = 1, \lambda_V = 0$

 $SU(2)_L \times U(1)_Y$ gauge structure checked rather precisely at LEP2 Note: QCD also very precisely tested! - running of α_s from m_{τ} to LEP2. - 3 gluon vertex determined at LEP1

 \top 3 gluon vertex determined at LEP1.

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.13/25

3. Constraints on M_H : experiment

Indirect searches:

H contributes to RC to W/Z masses:

Fit the EW precision measurements:

Physiaue au LHC – A. Djouadi – p.14/25

3. Constraints on M_H : perturbative unitarity Scattering of massive gauge bosons ${f V_L}{f V_L} o {f V_L}{f V_L}$ at high-energy- \sim H~~~~ Because w interactions increase with energy (q^{μ} terms in V propagator), $s \gg M_W^2 \Rightarrow \sigma(w^+w^- \to w^+w^-) \propto s$: \Rightarrow unitarity violation possible! Decomposition into partial waves and choose J=0 for $s\gg M_{\mathbf{W}}^2$: $\mathbf{a_0} = -rac{\mathbf{M}_{\mathbf{H}}^2}{8\pi\mathbf{v}^2} \left| 1 + rac{\mathbf{M}_{\mathbf{H}}^2}{\mathbf{s} - \mathbf{M}_{\mathbf{H}}^2} + rac{\mathbf{M}_{\mathbf{H}}^2}{\mathbf{s}} \log\left(1 + rac{\mathbf{s}}{\mathbf{M}_{\mathbf{H}}^2}
ight)
ight|$ For unitarity to be fullfiled, we need the condition $|{
m Re}({f a_0})| < 1/2$. At high energies, $s\gg M_{H}, M_{W}$, we have: $a_{0}\stackrel{s\gg M_{H}^{2}}{\longrightarrow}-\frac{M_{H}^{2}}{\circ--2}$ unitarity $\Rightarrow M_{\rm H} \lesssim 870 \, {\rm GeV} \, \left(M_{\rm H} \lesssim 710 \, {\rm GeV} \right)$ For a very heavy or no Higgs boson, we have: $a_0 \stackrel{s \ll M_H^2}{\longrightarrow} - \frac{s}{32\pi v^2}$ unitarity $\Rightarrow \sqrt{s} \lesssim 1.7 \text{ TeV} \ (\sqrt{s} \lesssim 1.2 \text{ TeV})$ Otherwise (strong?) New Physics should appear to restore unitarity. Ecole doctorale Orsay, 14–18/04/08 Physiaue au LHC – A. Djouadi – p.15/25

3. Constraints on M_H : triviality

The quartic coupling of the Higgs boson λ ($\propto\!M_{H}^{2}$) increases with energy.

The RGE evolution of λ with Q^2 and its solution are given by:

$$\frac{\mathrm{d}\lambda(Q^2)}{\mathrm{d}Q^2} = \frac{3}{4\pi^2}\,\lambda^2(Q^2) \Rightarrow \lambda(Q^2) = \lambda(v^2)\left[1 - \frac{3}{4\pi^2}\,\lambda(v^2)\log\frac{Q^2}{v^2}\right]^{-1}$$

• If $Q^2 \ll v^2$, $\lambda(Q^2) \to 0_+$: the theory is said to be trivial (no int.). • If $Q^2 \gg v^2$, $\lambda(Q^2) \to \infty$: Landau pole at $Q = v \exp\left(\frac{4\pi^2 v^2}{M_H^2}\right)$.

The SM is valid only at scales before λ becomes infinite:

If
$$\Lambda_C = M_H$$
, $\lambda \lesssim 4\pi \Rightarrow M_H \lesssim 650$ GeV

(Comparable to results obtained with simulations on the lattice!)

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.16/25

3. Constraints on M_H : vacuum stability

The top quark and gauge bosons also contribute to the evolution of $\lambdaar{.}$

The RGE evolution of the coupling at one-loop is given by

$$\lambda(Q^2) = \lambda(v^2) + \frac{1}{16\pi^2} \left[-12\frac{m_t^4}{v^4} + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \log \frac{Q^2}{v^2}$$

If λ is small (H is light), top loops might lead to $\lambda(0) < \lambda(v)$:

 \boldsymbol{v} is not the minimum of the potentiel and the EW vacuum is instable.

 \Rightarrow Impose that the coupling λ stays always positive:

$$\lambda(Q^2) > 0 \Rightarrow M_H^2 > \frac{v^2}{8\pi^2} \left[-12\frac{m_t^4}{v^4} + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right] \log \frac{Q^2}{v^2}$$

Very strong constraint: $Q = \Lambda_C \sim 1 \text{ TeV} \Rightarrow M_H \gtrsim 70 \text{ GeV}$

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.17/25

3. Constraints on M_H : triviality+stability

 $\Lambda_C \sim 10^3 \,\mathrm{GeV} \implies 70 \,\mathrm{GeV} \lesssim M_H \lesssim 700 \,\mathrm{GeV}$ $\Lambda_C \sim 10^{16} \,\mathrm{GeV} \implies 130 \,\mathrm{GeV} \lesssim M_H \lesssim 180 \,\mathrm{GeV}$

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.18/25

4. Problems and shortcomings of the SM

The SM has many attractive theoretical/experimental features:

- Based on gauge principle, unitary, perturbative, renormalisable · · ·
- ullet Once M_{H} fixed: everything is predictible with great accuracy.
- And has passed all experimental tests up to now.

But the model has too many shortcomings:

- Too many free parameters (19!) in the model, put by hand...
- No satisfactory explanation for $\mu^{\mathbf{2}} < \mathbf{0}$ (put ad hoc).
- Does not include the fourth fundamental force, gravity, ...
- Does not say anything about the masses of the neutrinos.
- Does not explain the baryon asymmetry in the universe.
- No real unification of the three gauge interactions; fast P decay.
- There is no stable, weak, massive particle for dark matter.

And above all that, there is the hierarchy or naturalness problem.

Physiaue au LHC – A. Djouadi – p.19/25

4. Problems of the SM: unification

In SM, we have 3 different gauge groups with 3 coupling constants: \Rightarrow SU(3)xSU(2)xU(1) subgroup of a bigger unifying group. Grand Unified Theory (GUT): SU(5), SO(10), E₆ etc....

ullet only one coupling constant a the GUT scale $M_{
m GUT}=M_{f U}$

Spontaneous breakdown to $G_{\rm SM}$ at $M_{\mathbf U}$ (intermdeiate scale?).

• GUT has fundamental representation including all SM fermions. Ex: SO(10) has dim. 16 repr. which incorporates 15 SM fermions.

- Space left for RH neutrinos: generation of m_{ν} via see–saw.
- Baryon asymmetry of the universe through leptogenesis
- Explains charge quantization (ex. in SU(5): e,d in multiplet).
- ullet Can relate the masses of fermions at M_U (Yukama coupling unif.) However, there is a problem in non-SUSY GUTS:

the SU(3), SU(2) and U(1) gauge couplings $\alpha_{i}=g_{i}^{2}/(4\pi)$ do not unify:

4. Problems of the SM: unification

The running of the coupling constants: due to radiative corrections to the interaction term in the original Lagrangian ($\gamma f \overline{f}$ in QED); equivalent to ren. of two–point functions; evolution determined by RGE which depends on relevant gauge group and particle content. In the context of SU(5), there is no unification with SM particle content

Alternative view: couplings do not meet at a single point near $M_{\rm GUT}$.

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.21/25

4. Problems of the SM: proton decay

P decay occurs via exchange of the heavy SU(5) gauge bosons X,Y:

- Compute the effective 4-fermion interaction (CKM... dependent).
- Run down vertices from high scale $M_{{\bf X},{\bf Y}} \sim M_{\rm GUT}$ to $m_{{\bf P}}.$
- Calculate hadronic ME of the 4–fermion operator (model dep..). With the input GUT scale from $g_i's,\,M_{GUT}\sim 10^{15}$ GeV, one has:

$$\tau_{\mathbf{P}}^{\text{non-SUSY GUT}} = \mathbf{10^{30 \pm 1.7}} \text{ years}$$

To be compared to $au_{\mathbf{P}}^{\mathrm{exp}}\gtrsim \mathbf{10^{33}}$ years: P decay is far too fast!!!

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.22/25

4. Problems of the SM: no cold dark matter

The experimental measurement of the galaxy rotation curve:

shows that some dark matter should be present in universe.

From large structure formation: DM should be cold (non relativistic)

The WMAP satelitte has shown that there is 25% of CDM:

 $\Omega_{\rm DM} \, h^2 \simeq 0.113 \pm 0.009 \Rightarrow 0.09 \le \Omega_{\rm DM} \, h^2 \le 0.14 \; {\rm at} \; 99\% \; {\rm CL}$

Needs a particle that fullfils the following conditions:

electrically neutral, weakly interacting, rather massive and stable!

There is no such a particle in the SM and also in non–SUSY GUTs!

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.23/25

4. Problems of the SM: the hierarchy problem

Radiative corrections to the Higgs boson mass in the SM

Let us first consider the fermion loop contribution to ${
m M}_{
m H}^2$

Using a cut–off Λ (see excercises later) one obtains:

$$\Delta M_{H}^{2} = N_{f} rac{\lambda_{f}^{2}}{8\pi^{2}} iggg[-\Lambda^{2} + 6m_{f}^{2} ext{log} rac{\Lambda}{m_{f}} - 2m_{f}^{2} iggg] + \mathcal{O}(1/\Lambda^{2})$$

We have thus a quadratic divergence, $\Delta M_{H}^{2} \sim \Lambda^{2}$.

Divergence is independent of $M_{\rm H}$, and does not disappear if $M_{\rm H}\!=\!0$: The choice $M_{\rm H}=0$ does not increase the symmetry of ${\cal L}_{\rm SM}$. If we fix the cut–off Λ to $M_{\rm GUT}$ or $M_{\rm P}$: $\Rightarrow M_{\rm H} \sim 10^{14}$ to 10^{17} GeV! The Higgs boson mass prefers to be close to the very high scale: This is the hierarchy problem.

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.24/25

4. Problems of the SM: the hierarchy problem

But we want a light Higgs ($m M_{H} \lesssim 1$ TeV) for unitarity etc... reasons. We need thus to make: $M_{H}^{2}|^{\mathrm{Physical}} = M_{H}^{2}|^{0} + \Delta M_{H}^{2}$ + countreterm And adjust this counterterm with a precision of 10^{-30} (30 digits) This fine-tunning would be very unnatural... In SM, besides fermion loops, there are also contributions to ${
m M_{H}}$ from the massive gauge bosons and from the Higgs boson itself: $2 \Rightarrow \Delta M_{H}^{2} \propto [3(M_{W}^{2} + M_{Z}^{2} + M_{H}^{2})/4 - \sum m_{f}^{2}](\Lambda^{2}/M_{W}^{2})$ We can adjust the unknown M_{H} so that the quadratic divergence disappears (would be a prediction for Higgs mass, $M_{
m H} \sim 200$ GeV). However: does not work at two–loop level or at higher orders.... Summary: the problem of the quadratic divergences to M_{H} is there. Photon and fermion masses protected by gauge and chiral symmetry, but here is no symmetry which protects $\mathbf{M}_{\mathbf{H}}$ in the SM.

Ecole doctorale Orsay, 14–18/04/08

Physiaue au LHC – A. Djouadi – p.25/25