Results on WIMP search with CsI(Tl) Detector at KIMS

Sun Kee Kim Seoul National University

For the KIMS Collaboration

NDM 2006, Paris

KIMS Korea Invisible Mass Search

H.C.Bhang, J.H.Choi, D.W.Kim, S.C.Kim, S.K.Kim S.Y.Kim, J.H.Lee, H.S.Lee, S.E.Lee, J. Lee, S.S.Myung *Seoul National University*

U.G.Kang, Y.D.Kim, J.I. Lee *Sejong University*

H.J.Kim, J.H.So, S.C.Yang Kyungpook National University

M.J.Hwang, Y.J.Kwon Yonsei University

I.S.Hahn *Ewha Womans University*

Y.H.Kim, K.B.Lee, M. Lee *Korea*

M.H.Lee, E.S.Seo Univ. of Maryland

J.Li Institute of High Energy Physics

D. He, X.Li, Q.Yue Tsinghua University

Research Program of KIMS

WIMP Search

- CsI(Tl) crystal detector

running $\rightarrow 1^{st}$ result was reported

- Ultra-low energy HPGe detector (with Taiwan & China) R&D setup is running
- Development of cryogenic detector
 R&D effort is on going

Neutrinoless double beta decay Search

- Metal loaded liquid scintillator

pilot experiment is running – a preliminary result

- CaMoO₄ crystal (with Russia and Ukrine)
 R&D effort is on going → poster in this symposium

Yangyang Underground Laboratory

Korea Middleland Power Co. Yangyang Pumped Storage Power Plant

(Power Plant)

Access to the lab by car (~2km)

er Dam)

(Upper Dam)

CsI(Tl) Crystal

Advantage

Easy to get large mass with an affordable cost → Good for AM study High light yield ~60,000/MeV Pulse shape discrimination → Moderate background rejection Easy fabrication and handling

Disadvantages

Emission spectra does not match with normal bi-alkali PMT => Effectively reduce light yield $^{137}Cs(t_{1/2} \sim 30y)$, $^{134}Cs(t_{1/2} \sim 2y)$ may be problematic

	CsI(Tl)	NaI(TI)		<sp></sp>	<sn></sn>
Photons/MeV Density(g/cm3)	~60,000 4.53	~40,000 3.67	Cs-133	-0.2~-0.39	~0
Decay Time(ns)	~1050	~230	I-127	0.309	0.075
Hygroscopicity	slight	415 strong	Na-23	0.248	0.019

Pulse shape discrimination Of gamma background

H. Park et al. | Nuclear Instruments and Methods in Physics Research A 491 (2002) 460-469

KIMS

Muon Detector

- 4π coverage muon detector : 28 channels
- Liquid Scintillator(5%) + Mineral Oil (95%) = 7 ton
- Measured Muon flux = $2.7 \times 10^{-7} / \text{cm}^2/\text{s}$
- Position resolution : $\sigma_{x_1} \sim 8 \text{ cm}$
- Reconstructed muon tracks with hit information
- Muon veto efficiency ~99.9%

Neutron detector

- •1 ~ 1.2 liter BC501A liquid scintillator x 3
- •n/g separation using PSD
- •E_vis > 300 keV
- •Measured neutron flux (outside shield)

→ $8 \times 10^{-7} / \text{cm}^2/\text{s}$ (1.5 < E neutron < 6 MeV)

Muon induced neutron

Log₁₀(∆t)

Set-up	Events	Day	Liter
Α	2	67.4	1.2
В	9	203.0	1.0
С	11	203.0	1.2

22 events of Muon induced neutrons $(4.2\pm0.9)\times10^{-2}$ counts/day/liter

Radon Monitoring

- Electrostatic alpha spectroscopy : 70 liter stainless container
- Use Si(Li) photodiode : 30 x 30 mm
- Estimate ²²²Rn amount with energy spectrum of a from ²¹⁸Po & ²¹⁴Po.
- Photodiode calibration : ²¹⁰Po, ²⁴¹Am
- ²²²Rn in air = 1 ~ 2 pCi/liter
- Absolute efficiency calibration done with ²²⁶Ra

Internal background

Radioisotopes in the crystal

Reduction of internal background

Cs-137 reduction – use ultra pure water in powder prodcution

Detector & DAQ

CsI(Tl) Crystal 8x8x30 cm³ (8.7 kg)

3" PMT (9269QA) : Quartz window, RbCs photo cathode

~5 Photo-electron/keV

DAQ : 500MHz Home Made FADC

trigger condition : 5 photo-electrons within 2µsec + high energy trigger

 32μ sec window

vme to pc connection by usb

DAQ written in ROOT

Neutron calibration

300 mCi Am/Be source

- \rightarrow neutron rate 7 x 10⁵ neutrons /sec
- → a few 100 neutrons/sec hit 3cmX3cm cry stal
- → Quenching factor of Recoil Energy NR mean time distribution

@Energy = 4-5 keV
137 Cs Compton
Neutron Recoil

Crystals and data taking

KIMS First WIMP Limit

Dark matter density at the solar system

 $\rho_{\rm D}$ = 0.3 GeV c⁻² cm ⁻³

> Use annual average parameters

 $\mathcal{V}_0 = 220 \text{ km s}^{-1}, \ \mathcal{V}_E = 232 \text{ km s}^{-1}, \ \mathcal{V}_{Esc} = 650 \text{ km s}^{-1}$

Data used for this analysis

```
S0501A (8.7kg) 1147 kg days
S0501B (8.7kg) 1030 kg days
at T = 0° C
```

Calibration and control data samples

```
Neutron ~ 500 kg days (at 4~6 keV)
Gamma (using <sup>137</sup>Cs)
~ 1100 kg days (0501A), 1650 kg days(0501B)
PMT only ~190 kg days for each crystal with the PMTS used
for each crystal
```


Cut list

- Base cut to get rid of junk events
- Coincidence event cut
- Fit quality cut
 - fitted \mathbf{T}_{f}
 - log likelihood value for two exponential fit and one expo nential fit
 - ratio of fitted mean time to the calculated mean time
- Short component rejection
 - ratio of tail (t> 10 μ s) to the whole amplitude
 - asymmetry cut

Coincidence event rejection

Decay time fit and fit quality cut

Efficiency

NR event rate estimation

• Modeling of Calibration data with asy mmetric gaussian function

- Fit the WIMP search DATA with PDF function from gam ma and neutron calibration da ta
 - \rightarrow extract NR events rate

NR recoil event rate

Spin dependent limits (only with I)

Pure proton case

Pure neutron case

Form factor and spin expectation value for "I" are obtained from "M.T.Ressel and D.J.Dean PRC 56(1997) 535

What's next?

Analyze R&D run data carefully

- optimize the running condition (temperature, quartz)

Understand short <t> components (origin & characteristics)

- surface alpha : careful surface treatment
- PMT background : taking data w/o crystal

Install >12 crystals(~100 kg) - upgrade of FADC (8 bit 500 Ms → 10 bit 400 Ms) + 12 bit 64Ms)

- take data for long term with stable condition

Keep R&D on reducing internal background - needs < 1cpd → for larger mass detector

Fast events at high energy

Summary & Prospects

- Pilot run with one crystal of 6.6 kg mass
 Published the first physics result
- Various R&D run was done
 - About 4000 kg day data accumulated
 - With and without quartz block (5cm thick)
 - 0 degree and Room temperature operation
 - Analysis is ongoing
 - **Preliminary result with 2177 kg days**
- Successfully reduced internal backgrounds of CsI(Tl) crystals (latest powder ~ 2cpd)
 - 100 kg full size crystals(8x8x30cm3)
 - Current shielding can accomodate 250 kg
- 100 kg crystals run will start within a few mont hs
 - Annual modulation

