

The KATRIN experiment

direct v-mass measurement with sub-eV sensitivity

- astroparticle physics motivation
- direct v-mass experiments
- KATRIN components: source & spectrometers
- sensitivity & outlook

non-accelerator roads to v-masses

ß-decay and neutrino mass

model independent neutrino mass from ß-decay kinematics

$$\frac{d\Gamma_{i}}{dE} = C p (E + m_{e}) (E_{0} - E) \sqrt{(E_{0} - E)^{2} - (m_{i}^{2})^{2}} F(E) \theta(E_{0} - E - m_{i})$$

$$C = G_{F}^{2} \frac{m_{e}^{5}}{2\pi^{3}} \cos^{2} \theta_{C} |M|^{2}$$

$$E_{0} = 18.6 \text{ keV}$$

$$T_{1/2} = 12.3 \text{ y}$$

$$\int_{0.6}^{0.6} \int_{0.6}^{0.6} \int_{0.6}^{0.6$$

history of tritium ß-decay results

ITEP

T₂ in complex molecule magn. spectrometer (Tret'yakov)

Los Alamos

gaseous T₂ - source magn. spectrometer (Tret'yakov)

Tokio

T - source magn. spectrometer (Tret'yakov)

Livermore

gaseous T₂ - source magn. spectrometer (Tret'yakov)

Zürich

*T*₂ - source impl. on carrier magn. spectrometer (Tret'yakov)

Troitsk (1994-today)

gaseous T₂ - source electrostat. spectrometer

Mainz (1994-today)

frozen T₂ - source electrostat. spectrometer m_{ν}

17-40 eV

Treťyakov

 $\Delta p/p = 7 \times 10^{-4}$ d $\Omega = 10^{-3}$

magnetic guiding field: analysis of momentum

magnetic guiding & electric retarding field

history of tritium ß-decay results

ITEP	m _v		
T ₂ in complex molecule magn. spectrometer (Tret'yakov)	17-40 eV	experimental res	ults
Los Alamos		100	
gaseous T ₂ - source magn. spectrometer (Tret'yakov)	< 9.3 eV	√ ⁵⁰ I I	
Tokio T - source magn. spectrometer (Tret'yakov)	< 13.1 eV		
Livermore			Los Alamos
gaseous T ₂ - source magn. spectrometer (Tret'yakov)	< 7.0 eV	-150	I Mainz I Tokio
Zürich			Troitsk
T ₂ - source impl. on carrier magn. spectrometer (Tret'yakov)	< 11.7 eV	-200 -	Zürich
Troitsk (1994-today)		-250 – ele	ctrostatic
gaseous T ₂ - source electrostat. spectrometer	< 2.05 eV	-300 magnetic spectrometers	ectrometers
Mainz (1994-today)		-350 [
frozen T ₂ - source electrostat. spectrometer	< 2.3 eV	1986 1988 1990 1992 1994	1996 1998 2000 <i>year</i>

Status of previous tritium experiments

Mainz & Troitsk have reached their intrinsic limit of sensitivity

Troitsk

windowless gaseous T₂ source

analysis 1994 to 1999, 2001

 m_v^2 = -2.3 ± 2.5 ± 2.0 eV² $m_v \le 2.2$ eV (95% CL.) quench condensed solid T₂ source

Mainz

analysis 1998/99, 2001/02

 $m_v^2 = -1.2 \pm 2.2 \pm 2.1 \text{ eV}^2$ $m_v \leq 2.2 \text{ eV} (95\% \text{ CL}.)$

both experiments now used for systematic investigations

~ 75 m linear setup with 40 s.c. solenoids

designing a next-generation experiment

experimental observable in *B*-decay is m_v^2

aim : improve m_v by one order of magnitude (2 eV \rightarrow 0.2 eV) requires : improve m_v^2 by two orders of magnitude (4 eV² \rightarrow 0.04 eV²) problem : count rate close to ß-end point drops very fast ($\sim \delta E^3$)

tritium bearing components - overview

windowless tritium source- design

molecular gaseous ß-decay source, maximum luminosity (10¹¹ ß/s)

• integral design criterium: column density $\rho d = 5 \times 10^{17}$ molecules / cm²

single design criteria:

- magnetic field $B = 3.6 T (\pm 2\%)$
- tritium injection 5×10^{19} mol/s =
 - $4.7 \text{ Ci/s} = 1.7 \text{ x} 10^{11} \text{ Bq/s}$
 - = 40 g tritium / day
- temperature T = 27-30K $\Delta T \le 30 \text{ mK}$
- pumping speed 12.000 l/s

WGTS – tritium pressure

WGTS – magnetic field

WGTS – cooling concept

operating temperature: 27–28 K

- **spatial** (homogeneity): ± 0.1%
- time (stability/hour): ± 0.1%

conceptual design:

2-phase Neon (boiling liquid)

2 separate cooling pipes Ø=16mm (2 wall barrier concept for T_2)

closed tritium cycle

test experiment TILO

design tritium cycle at TLK

experimental aims: test of

- molecular-kinetetic models
- measurement- & controlsystem

measurements since June 2005

outer Loop

- stable WGTS parameters
- high tritium purity

differential pumping section

- 5 solenoids with B=5.6T
 (LHe bath cooling)
- 4 pumping ports (T=77K)

cryogenic pumping section

cryogenic pumping section

objective: retention of remaining tritium flux tritium partial pressure spectrometer p < 10⁻²⁰ mbar method: cryo-sorption on condensing Ar-frost rate: <1 Ci T₂ in 60 days (regeneration with warm He-gas)

TRAP - Tritium Argon Frost Pump

electrostatic spectrometers

electrostatic spectrometers

electrostatic spectrometers

assembly works at French manufacturer SDMS

pre-spectrometer vacuum tests

UHV concept: TMP`s & NEG-getters

1. outgassing rate @ -20°C

specified: 1×10^{-12} mbar I / cm² s measured: 7×10^{-14} mbar I / cm² s gas charge: ~50% vessel, ~50% TMP&QMS

2. final pressure

specified: $p < 10^{-11}$ mbar @ -20°C measured: $p < 10^{-11}$ mbar @ RT

pre-spectrometer: elmagn. tests

inner wire electrode

task: verification of s.c.-magnets electromagn. concept 8x8 Si-PIN Array electron gun 20

main spectrometer – August 2006 initial vacuum test $p \le 6 \times 10^{-8}$ mbar 1 TMP, no bake-out

main spectrometer – transport logistics

main spectrometer – inner electrode

tasks of inner wire-based electrode system:

inner wire-based electrode system

two-layer system

1. wire plane parallel/equidistant to spectrometer wall const. wire spacing const. $U_1 = U_{sp} + \Delta U_1$

2. wire plane non-equidistant var. wire spacing var. $U_2 = U_{sp} + \Delta U_2$ wire sag: sub-mm!

precision HV supply

measurements require HV-stabilisation/monitoring/ calibration on ppm level (wideband: DC up to MHz)

♦ ppm-voltage divider

air coil system

elctromagnetic layout based on additional air coil system:

- compensation earth magnetic field (EMC) axially
- homogeneity B-field analysing plane (LFC) radially

focal plane detector

task: detection of transmitted ß-decay electrons with high energy resolution ($\Delta E = 1 \text{ keV}$) record radial profile of flux tube

aim: background minimisation, systematic effects

KATRIN design optimisation

improvement of experimental sensitivity (2001-04)

statistics {	 enlargement of WGTS diameter (×2) enlargement of main spectrometer dimensions (Ø = 7 m → 10 m, L = 20 m → 23 m) for ΔE=0.93 eV improved tritium infrastructure (T₂ purity 70% → 95%)
back- ground	 inner wire electrode system (pre- & main spectrometer) active trap clearing (dipole fields, FT-ICR) extreme UHV with p < 10⁻¹¹ mbar
system. errors	 monitor spectrometer (reference for HV) system for measuring inelast. ß-scatterings in WGTS stabilisation of WGTS-parameters to 0.1% (T,p_{inj},) optimisation & enlargement of tritium pumping section

KATRIN statistical errors

design optimisation 2002-2004: improved sensitivity

background – sources & suppression

total background rate at Mainz/Troitsk: ~10 mHz, aim for same rate at KATRIN

- detector: aim for bg-rate in few mHz range, environmental γ's / X-rays & cosmics, , larger area: better energy resolution & better shielding, thinner detector, material selection develop background model on GEANT4.4 simulations
- spectrometer: aim for bg-rate in few mHz range

 T_2

- a) low energy shake off electrons from tritium ß-decays
- 1mHz bg-rate from $\sim 10^{-20}$ mbar tritium partial pressure (cryotrapping section)
- b) ß-decay electrons in keV-range that get trapped (-> ionising collisions) stringent XHV conditions <10⁻¹¹ mbar & active removal of trapped particles
- c) cosmic ray induced δ -electrons (muons, elmag. showers, hadronic component)
- CR can create ions, -> tertiary reactions: electrons & H⁻ ions, stringent XHV conditions <10⁻¹¹ mbar & active removal of trapped particles
- β's
 d) trapped β-electrons (from 'normal' tritium decays in WGTS) stringent XHV conditions <10⁻¹¹ mbar & active removal of trapped particles
- sources: a) ß-electrons from tritium decays in areas with different source potential
 b) ß-electrons from T⁻ ions (higher end-point) careful electromag. design

Systematic uncertainties

$$\Delta m_v^2$$
 = - 2 σ_{syst}^2

general relation for KATRIN statistics

- 1. inelastic scatterings of ß's inside WGTS (major uncertainty in KATRIN)
 - requires dedicated e-gun measurements, unfolding techniques for response fct.
- 2. HV stability of retarding potential on ~1ppm level required
 - precision HV divider (PTB), monitor spectrometer beamline
- 3. fluctuations of WGTS column density (required < 0.1%)
 - e-gun measurements, rear detector, rear plate, Laser-Raman spectroscopy, stabilisation of T=27K beam tube, injection pressure
- 4. WGTS charging due to remaining ions (MC: ϕ <20mV)
 - inject low energy meV electrons from rear side, diagnostic tools available
- 5. final state distribution

- very reliable quantum-chem. calculations exist, new calc. by J Tennyson (UCL)

KATRIN sensitivity

KATRIN Collaboration

K. Maier, R. Vianden Universität Bonn, Helmholtz - Institut für Strahlen- und Kernphysik (D)

J. Herbert, O. Malyshev, R. Reid ASTeC*, CCLRC- Daresbury Laboratory, Daresbury (UK) (*Expertengruppe)

I.N. Meshkov, Y. Syresin JINR*, Dubna (RU) (*assoz. Mitglied)

A. Osipowicz Fachhochschule Fulda, FB Elektrotechnik (D)

T. Armbrust, L. Bornschein, G. Drexlin, F. Eichelhardt, F. Habermehl, F. Schwamm, J. Wolf Universität Karlsruhe, Institut für Experimentelle Kernphysik (D)

at present > 105 members D-USA-UK-RU-CZ-BR 18 institutes

since 2005: MIT, UCL

J. Blümer, K. Eitel, A. Felden, B. Freudiger, F. Glück, S. Grohmann, R. Gumbsheimer, T. Höhn, H. Hucker, N. Kernert, H. Krause, M. Mark, X. Luo, K. Müller, S. Mutterer, P. Plischke, K. Schlösser, U. Schmitt, M. Steidl, H. Weingardt Forschungszentrum Karlsruhe, Institut für Kernphysik (D)

A. Beglarian, H. Gemmeke, S. Wüstling Forschungszentrum Karlsruhe, Institut für Prozeßdatenverarbeitung und Elektronik (D)

C. Day, R. Gehring, K.-P. Jüngst, P. Komarek, H. Neumann, M. Noe, M. Süßer Forschungszentrum Karlsruhe, Institut für Technische Physik (D)

U. Besserer, B. Bornschein, L. Dörr, M. Glugla, G. Hellriegel, O. Kazachenko, P. Schäfer, J. Wendel Forschungszentrum Karlsruhe, Tritium Labor Karlsruhe (D)

M. Keilhauer, M. Neuberger, A. Weis Forschungszentrum Karlsruhe, S-Bereich: Kfm. Projektabwicklung/Aufträge (D)

J. Angrik, J. Bonn, R. Carr, K. Essig, B. Flatt, C. Kraus, E.W. Otten, P. Schwinzer, D. Sevilla Sanchez Universität Mainz, Institut für Physik (D)

H.W. Ortjohann, B. Ostrick, M. Prall, T. Thümmler, N.A. Titov, K. Valerius, C. Weinheimer Universität Münster, Institut für Kernphysik (D)

G.R. Myneni Jefferson Laboratory/Old Dominion*, Newport News (USA) (*Expertengruppe)

F. Sharipov

Universidade Federal do Parana*, (Brasilien) (*Expertengruppe)

E.V. Geraskin, O.V. Ivanov, V.M. Lobashev, S. Osipov, A. Skasyrskaya, V. Usanov, S.A. Zadorozhny Academy of Sciences of Russia, INR Troitsk (RU)

O. Dragoun, J. Kašpar, A. Kovalík, M. Ryšavy, A. Špalek, D. Vénos, M. Zbořil Czech Academy of Sciences, NPI, Řež / Prague (CZ)

T. Burritt, P.J. Doe, J. Formaggio, G. Harper, M. Howe, M. Leber, K. Rielage, R.G.H. Robertson, T. Van Wechel, J.F. Wilkerson University of Washington, Seattle (USA)

M. Charlton, A.J. Davies, R. Lewis, H.H. Telle University of Wales, Swansea (UK)

KATRIN time line

2001	first presentation, founding of KATRIN collaboration,
	Lol: hep-ex/0109033 BMBF funding ,Astroteilchenphysik'
since 2002	background studies, R&D works, design optimisation
2003	pre-spectrometer manufacture, order for first large magnet group
2004	evaluation by HGF programme, Design Report 2004,
	orders for main spectrometer, WGTS & He-liquefier,
2005	vacuum tests pre-spectrometer
2006	elmagn. tests pre-spectrometer, main spectrometer vacuum tests
2007	source demonstrator, inner electrode mounting
2008	commissioning of WGTS, tritium loops, em. tests of spectrometers
2009/10	system integration & first tritium runs
	regular data taking for 5-6 years (3fb years)

measure absolute neutrino masses

KATRIN only model-independent approach with sub-eV sensitivity