Muon capture as a probe of double beta decay

Markus Kortelainen

Department of Physics, University of Jyväskylä

September 5, 2006

Markus Kortelainen (JYFL, Finland)

Ordinary muon capture (OMC) $(A,Z) + \mu^- \rightarrow (A,Z-1) + \nu_\mu$

$$m_{\mu} = 106 \,\,{
m MeV}$$
 ($\approx 200 m_{
m e}$)

₩

- the final state can be (highly) exited
- forbidden transitions are not as suppressed as in β-decay

OMC can be used as a probe of double beta decay

 \Rightarrow

Muon capture as a probe of double beta decay

Nuclear structure

- nuclear structure by shell-model calculations
- *fp*-shell used as a model space
- no negative parity states

Calculated OMC rates

Calculated OMC rates

OMC:
$${}^{48}\text{Ti} \rightarrow {}^{48}\text{Sc}(J^{\pi})$$

Individual $0\nu\beta\beta$ contributions

Individual $0\nu\beta\beta$ contributions

Calculated OMC rates vs. $0\nu\beta\beta$ contributions

- OMC rates in 48 Ti and $M^{(0\nu)}$ for 48 Ca has been calculated in the shell-model framework
- OMC allows to study transitions of one virtual leg of ββ-decay
- biggest OMC transition rates concentrate on the lowest states of ⁴⁸Sc
- biggest contributions to 0νββ matrix element are found among the lowest intermediate states
- Individual M^(0ν) contributions and OMC rates to the intermediate states have a good correspondence