DARK ENERGY: PRESENT AND FUTURE OBSERVATIONS

Louis-Gregory Strolger Western Kentucky University

The History of Cosmic Expansion

Observations The Universe is Expanding. CMB -> Hot Big Bang! (inflation) Theory & Principles (corroborated by observations) General Relativity Homogeneous & isotropic on large scales

Friedman Equation: Equation of Motion for Universe

(Dark) Matter $H^{2} \equiv \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}}$ $\Omega_{M} \equiv \frac{8\pi G}{3H_{0}^{2}}\rho_{M,0}$ $\Omega_{\Lambda} \equiv \frac{\Lambda}{3H_{0}^{2}}$ $\Omega_{k} \equiv -\frac{k}{R_{0}^{2}H_{0}^{2}}$ (Dark) Energy Einstein's blunder? $\Omega_{M} + \Omega_{\Lambda} + \Omega_{k} = -1, 0, +1$ Geometry (Curvature)

The Expansion History of the Universe $D_{L} = cH_{0}^{-1}(1+z)|\Omega_{k}|^{-1/2}S\left\{|\Omega_{k}|^{1/2}\int_{0}^{z}dz'[(1+z)^{2}(1+\Omega_{M}z)-z(2+z)\Omega_{\Lambda}]^{-1/2}\right\}$

Mass is Destiny

How (we think) Nature Makes a Type Ia Supernova

- The Homogeneity: 1.4 M_{\odot} , 10⁵¹ ergs
- Ø Negligible hydrogen, lots of Intermediate Mass Elements
- Mature progenitors
- Models (delayed-detonation) good fit to observations

125% fainter than $\Omega_M = 0.3$ $\Omega_\Lambda = 0.0$

Searching for the Epoch of Deceleration

The GOODS ACS Treasury Program...

Type Ia Supernova Discoveries at $z > 1$ From the Hubble SpaceTelescope: Evidence for Past Deceleration and Constraints on Dark-Energy Evolution1Adam G. Riess ² , Louis-Gregory Strolger ² , John Tonry ³ , Stefano Casertano ² , Henry	Year I	399 orbits: Deep extragalactic studies 134 orbits: ToO 6 - 8 SNe at 1.2 < z < 1.8
C. Ferguson ² , Bahram Mobasher ² , Peter Challis ⁴ , Alexei V. Filippenko ⁵ , Saurabh Jha ⁵ , Weidong Li ⁵ , Ryan Chornock ⁵ , Robert P. Kirshner ⁴ , Bruno Leibundgut ⁶ , Mark Dickinson ² , Mario Livio ² , Mauro Giavalisco ² , Chuck Steidel ⁷ , Txitxo Benitez ⁸ and Zlatan Tsvetanov ⁸	Year 2	260 orbits w/ Supernova Cosmology Project!
THE HUBBLE HIGHER- z SUPERNOVA SEARCH: SUPERNOVAE TO $z\approx 1.6$ AND CONSTRAINTS ON TYPE Ia PROGENITOR MODELS a	Year 3	360 orbits for supernova studies.
Louis-Gregory Strolger ² , Adam G. Riess ² , Tomas Dahlen ² , Mario Livio ² , Nino Panagia ^{2,3} , Peter Challis ⁴ , John L. Tonry ⁵ , Alexei V. Elippenko ⁶ , Ryan Chornock ⁶ , Henry Ferguson ² , Anton Koekemoer ² , Bahr M Mobasher ^{2,3} , Mark Dickinson ² , Mauro Giavalisco ² , Stefano Caseptano ² , Bichard Hook ⁷	Year 4	parallel data survey (incl. UDF)
 MARK DICKINSON, MACHO GIAVALISCO, DIEFARO CASERIARO FILCHARD HOOK, STEPHANE BLONDIN⁸, BRUNO LEIBUNDGUT⁸, MARIO NONINO⁹, PIERO KOSATI⁸, HYRON SPINRAD⁶, CHARLES C. STEIDEL¹⁰, DANIEL STERN¹¹, PETER M. GARNAVICH², THOMAS MATHESON⁴, NORMAN GROGIN¹³, ANN HORNSCHEMEIER¹³, CLAUDIA KRETCHMER¹³, VICTORIA G. LAIDLER¹⁴, KYOUNGSOO LEE¹³, RAY LUCAS², DUILIA DE MELLO¹³, LEONIDAS A. MOUSTAKAS², SWARA RAVINDRANATH², MARIN RICHARDSON², AND EDWARD TAYLOR¹⁵ 	Year 5	186 orbits for high-z SNe AND H ₀ !

18% of HST time

A Cosmic Jerk: Deceleration gave way to Acceleration,

The New SN Ia Hubble Diagram

 Ω_{Λ} only describes $ho_{
m vac}$ If a perfect fluid (and constant), then $U=P\Delta V$ says $P_{
m vac}=ho_{
m vac}c^2$

Equation of state parameter reveals nature of Dark Energy!

$$w \equiv \frac{1}{c^2} \left(\frac{P}{\rho}\right)_{\rm vac}$$

 $w(z) = w_0 + \frac{w_a z}{1+z}$

 $w(z) = w_0 + w'z; w' \equiv \frac{dw}{dz}$

National Science Foundation and the National Aeronautics and Space Administration

Dr. Rocky Kolb (Chair) Fermi National Accelerator Laboratory

Dr. Andreas Albrecht University of California, Davis

Dr. Gary Bernstein University of Pennsylvania

Dr. Robert Cahn Lawrence Berkeley National Laboratory

Dr. Wendy Freedman Carnegie Observatories

Dr. Jacqueline Hewitt Massachusetts Institute of Technology

Dr. Wayne Hu University of Chicago Dr. John Huth Harvard University

Dr. Marc Kamionkowski California Institute of Technology

Dr. Lloyd Knox University of California, Davis

Dr. John Mather NASA-GSFC

Dr. Suzanne Staggs Princeton University

Dr. Nicholas Suntzeff Texas A&M University

The Next Step: critical observations

Galaxy Cluster counts (# of large structures)
 Baryon Acoustic Oscillations (BAO)
 Supernovae
 Weak Lensing

And somewhat later: Integrated Sachs-Wolfe effect
GRBs as standard candles
Gravitational Wave experiments

The Future... Is NOW!

- SNLS, ESSENCE -- Constrains on w via supernovae <z>=0.5. SNLS already a 100's!
- SDSS -- constraints on Ω_M/growth of structure via CL & weak lensing, SN result expected.
- WMAP -- BAO, SZ, & critical distance to z=1089
- SHOES -- Simultaneous constraints on H₀ and w'(w_a) via supernovae & cepheids.

A little further down the road... < 5 yrs.

Dark Energy Survey
Pan-STARRS-4

ALPACA

approx. 1000°'s

Cornell-Caltech Atacama Telescope
Cluster Imaging eXperiment (CIX)

SZ cluster detection

HST + WFC3 & COS!

HST Discovery Efficiency ACS/WFC 10000 WFC3/IR WFC3/UVIS WFPC2 1000 NICMOS/NIC3 ACS/HRC 100 200 2000 300 400 500 700 1000 Wavelength (nm)

Throughput x Area (arcsec²)

Still further yet... approx. 10 yrs.

LSST: 8-m "all sky" surveyor. 10,000°'s! Hemisphere every week!

GSMT: ultra deep optical & IR. – Giant Magellan Telescope – Thirty-Meter Telescope

SKA- Next logical step beyond ALMA, approx. 2 orders of mag. more sens. than VLA!

The distant, uncertain future...

space-based projects

Constellation-X: Next logical step from Chandra

JWST

The distant, uncertain future...

space-based projects

DESTINY

Joint Dark Energy Mission (NASA/DOE)

Closing in on Dark Energy: The Near Future

Rejection of Λ : i.e., wo ≠ -1 or w' ≠ 0 would be a tremendous breakthrough!

Phase Space of Supernova Dark Energy Surveys

The End