Neutrino Physics Prospects of Neutrinoless Double-Beta Decay

S. T. Petcov

SISSA/INFN, Trieste, Italy, and INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria

> NDM'06 Symposium Paris September 3 - 8, 2006

Compelling Evidences for ν -Oscillations

 $-\nu_{atm}$: SK UP-DOWN ASYMMETRY $θ_Z$ -, L/E- dependences of μ-like events

Dominant $u_{\mu}
ightarrow
u_{ au}$ K2K; MINOS, CNGS (OPERA)

 $-\nu_{\odot}$: Homestake, Kamiokande, SAGE, GALLEX/GNO Super-Kamiokande, SNO; KamLAND

Dominant $u_e
ightarrow
u_{\mu, au}$ BOREXINO,..., LowNu

- LSND

Dominant $\bar{
u}_{\mu}
ightarrow \bar{
u}_{e}$ MiniBOONE

$$\nu_{l\perp} = \sum_{j=1}^{N} U_{lj} \nu_{j\perp} \qquad l = e, \mu, \tau.$$
 (1)

B. Pontecorvo, 1957; 1958; 1967;Z. Maki, M. Nakagawa, S. Sakata, 1962;

PMNS Matrix: Standard Parametrization

$$U = V \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$
(2)

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13}e^{i\delta} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}e^{i\delta} \end{pmatrix}$$
(3)

•
$$s_{ij} \equiv \sin \theta_{ij}$$
, $c_{ij} \equiv \cos \theta_{ij}$, $\theta_{ij} = [0, \frac{\pi}{2}]$,

- δ Dirac CP-violation phase, $\delta = [0, 2\pi]$,
- α_{21} , α_{31} the two Majorana CP-violation phases.

S.M. Bilenky, J. Hosek, S.T.P.,1980

- $\Delta m_{\odot}^2 \equiv \Delta m_{21}^2 \cong 8.0 \times 10^{-5} \text{ eV}^2 > 0$, $\sin^2 \theta_{12} \cong 0.30$, $\cos 2\theta_{12} \gtrsim 0.28$ (2 σ),
- $|\Delta m_{\text{atm}}^2| \equiv |\Delta m_{31}^2| \cong 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} \cong 1$,
- θ_{13} the CHOOZ angle: $\sin^2 \theta_{13} < 0.027 (0.041) 2\sigma (3\sigma)$. A.Bandyopadhyay, S.Choubey, S.Goswami, S.T.P., D.P.Roy, hep-ph/0406328 (updated);

T. Schwetz, hep-ph/0606060.

- $\sqrt{\Delta m_{\odot}^2 \sin^2 \theta_{12}} \cong 3.0 \times 10^{-3} \text{ eV} (\pm) \sqrt{|\Delta m_{atm}^2|} \sin^2 \theta_{13} \lesssim 2.2 \times 10^{-3} \text{ eV};$
- $\sqrt{|\Delta m_{\text{atm}}^2|} \cong 5 \times 10^{-2} \text{ eV}; \ \sqrt{|\Delta m_{\text{atm}}^2|} \cos 2\theta_{12} \gtrsim 1.4 \times 10^{-2} \text{ eV} \ (\cos 2\theta_{12} \gtrsim 0.28)$
- m_0 : $m_0^2 \gg \Delta m_\odot^2, |\Delta m_{\rm atm}^2|, m_0 \gtrsim 0.1 \ {\rm eV}$
- $sgn(\Delta m_{atm}^2) = sgn(\Delta m_{31}^2)$ not determined

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{31}^2 > 0$, normal mass ordering

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{32}^2 < 0$, inverted mass ordering

Convention: $m_1 < m_2 < m_3$ - NMO, $m_3 < m_1 < m_2$ - IMO

• Majorana phases α_{21} , α_{31} :

- $u_l \leftrightarrow \nu_{l'}, \, \overline{\nu}_l \leftrightarrow \overline{\nu}_{l'}$ not sensitive;

S.M. Bilenky, J. Hosek, S.T.P.,1980; P. Langacker, S.T.P., G. Steigman, S. Toshev, 1987

 $-|<\!m>|$ in $(\beta\beta)_{0\nu}$ -decay depends on α_{21} , α_{31} ;

 $- \Gamma(\mu \rightarrow e + \gamma)$ etc. in SUSY theories depend on $\alpha_{21,31}$;

– BAU, leptogenesis scenario: $\alpha_{21,31}$?

Future Progress

- Determination of the nature Dirac or Majorana, of u_j .
- Determination of sgn($\Delta m_{\rm atm}^2$), type of ν mass spectrum

 $m_1 \ll m_2 \ll m_3,$ NH, $m_3 \ll m_1 < m_2,$ IH, $m_1 \cong m_2 \cong m_3, \ m_{1,2,3}^2 >> \Delta m_{atm}^2, \ QD; \ m_j \gtrsim 0.10 \text{ eV}.$

- Determining, or obtaining significant constraints on, the absolute scale of ν_{j} -masses, or min (m_{j}) .
- Status of the CP-symmetry in the lepton sector: violated due to δ (Dirac), and/or due to α_{21} , α_{31} (Majorana)?

• Measurement of, or improving by at least a factor of (5 - 10) the existing upper limit on, $\sin^2 \theta_{13}$.

• High precision determination of Δm_{\odot}^2 , θ_{\odot} , $\Delta m_{\rm atm}^2$, θ_{atm} .

• Searching for possible manifestations, other than ν_l -oscillations, of the nonconservation of L_l , $l = e, \mu, \tau$, such as $\mu \to e + \gamma$, $\tau \to \mu + \gamma$, etc. decays.

• Understanding at fundamental level the mechanism giving rise to the ν - masses and mixing and to the L_l -non-conservation. Includes understanding

– the origin of the observed patterns of ν -mixing and ν -masses ;

– the physical origin of CPV phases in U_{PMNS} ;

– Are the observed patterns of ν -mixing and of $\Delta m^2_{21,31}$ related to the existence of a new symmetry?

- Is there any relations between q-mixing and ν -mixing? Is $\theta_{12} + \theta_c = \pi/4$?

- Is $\theta_{23} = \pi/4$, or $\theta_{23} > \pi/4$ or else $\theta_{23} < \pi/4$?

– Is there any correlation between the values of CPV phases and of mixing angles in U_{PMNS} ?

• Progress in the theory of ν -mixing might lead to a better understanding of the origin of the BAU.

$(\beta\beta)_{0\nu}$ -Decay Experiments

- Majorana nature of u_j
- Type of ν -mass spectrum (NH, IH, QD)
- Absolute neutrino mass scale
- ³H β -decay, cosmology: m_{ν} (QD, IH)
 - CPV due to Majorana CPV phases

 ν_j – Dirac or Majorana particles, fundamental problem ν_j – Dirac: conserved lepton charge exists, $L = L_e + L_\mu + L_\tau$, $\nu_j \neq \overline{\nu}_j$

 ν_{j} Dirac. Conserved repton charge exists, $L = L_e + L_\mu + L_\tau$, $\nu_j \neq \nu_j$

 ν_j -Majorana: no lepton charge is exactly conserved, $\nu_j \equiv \overline{\nu}_j$ The observed patterns of ν -mixing and of $\Delta m_{\rm atm}^2$ and Δm_{\odot}^2 can be related to

Majorana ν_j and an approximate symmetry:

$$L' = L_e - L_\mu - L_\tau$$

S.T.P., 1982

See-saw mechanism: ν_j – Majorana

Establishing that ν_j are Majorana particles would be as important as the discovery of ν - oscillations.

If ν_j – Majorana particles, U_{PMNS} contains (3- ν mixing) δ -Dirac, α_{21} , α_{31} - Majorana physical CPV phases

 ν -oscillations $\nu_l \leftrightarrow \nu_{l'}$, $\overline{\nu}_l \leftrightarrow \overline{\nu}_{l'}$, $l, l' = e, \mu, \tau$,

• are not sensitive to the nature of u_j ,

S.M. Bilenky, J. Hosek, S.T.P.,1980; P. Langacker et al., 1987

• provide information on $\Delta m_{jk}^2 = m_j^2 - m_k^2$, but not on the absolute values of ν_j masses.

The Majorana nature of ν_j can manifest itself in the existence of $\Delta L = \pm 2$ processes:

$$K^+ \to \pi^- + \mu^+ + \mu^+$$

 $\mu^- + (A, Z) \to \mu^+ + (A, Z - 2)$

The process most sensitive to the possible Majorana nature of ν_j - $(\beta\beta)_{0\nu}\text{-}$ decay

$$(A, Z) \to (A, Z + 2) + e^{-} + e^{-}$$

of the even-even nuclei, ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁶Nd. 2*n* from (A,Z) exchange a virtual Majorana ν_j (via the CC weak interaction) and transform into 2*p* of (A,Z+2) and two free e^- .

strong in-medium modification of the basic process $dd \rightarrow uue^-e^-(\bar{v}_e\bar{v}_e)$

virtual excitation of states of all multipolarities in (A,Z+1) nucleus

(A,Z+2)

V. Rodin, talk at Gran Sasso, 2006

$$\begin{split} A(\beta\beta)_{0\nu} &\sim < m > \text{ M(A,Z), } \qquad \text{M(A,Z) - NME,} \\ || = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 \ e^{i\alpha_{21}} + m_3|U_{e3}|^2 \ e^{i\alpha_{31}}| \\ &= |m_1 \ c_{12}^2 \ c_{13}^2 + m_2 \ s_{12}^2 \ c_{13}^2 \ e^{i\alpha_{21}} + m_3 \ s_{13}^2 \ e^{i\alpha_{31}}|, \ \theta_{12} \equiv \theta_{\odot}, \ \theta_{13}\text{- CHOOZ} \end{split}$$

 α_{21} , α_{31} - the two Majorana CPVP of the PMNS matrix.

CP-invariance: $\alpha_{21} = 0, \pm \pi, \ \alpha_{31} = 0, \pm \pi;$

$$\eta_{21} \equiv e^{i\alpha_{21}} = \pm 1, \quad \eta_{31} \equiv e^{i\alpha_{31}} = \pm 1$$

relative CP-parities of ν_1 and $\nu_2,$ and of ν_1 and ν_3 .

L. Wolfenstein, 1981;

S.M. Bilenky, N. Nedelcheva, S.T.P., 1984;

B. Kayser, 1984.

Best sensitivity: Heidelberg-Moscow ⁷⁶Ge experiment.

```
Claim for a positive signal at > 3\sigma:
```

H. Klapdor-Kleingrothaus et al., PL B586 (2004),

 $|\langle m \rangle| = (0.1 - 0.9) \text{ eV} (99.73\% \text{ C.L.}).$

```
IGEX <sup>76</sup>Ge: |<m>| < (0.33 - 1.35) eV (90% C.L.).
```

Taking data - NEMO3 (¹⁰⁰Mo), CUORICINO (¹³⁰Te):

```
|<\!m>| <(0.7-1.2) eV, |<\!m>| <(0.18-0.90) eV (90% C.L.).
```

Large number of projects: $| < m > | \sim (0.01 - 0.05)$ eV

```
CUORE - {}^{130}Te,
GERDA - {}^{76}Ge,
SuperNEMO - {}^{82}Se,
EXO - {}^{136}Xe,
MAJORANA - {}^{76}Ge,
MOON - {}^{100}Mo,
CANDLES - {}^{48}Ca,
XMASS - {}^{136}Xe.
```

$$|\!<\!m\!>|$$
 : m_j , $heta_\odot\equiv heta_{12}$, $heta_{13}$, $lpha_{21,31}$

 $m_{1,2,3}$ - in terms of $\min(m_j)$, $\Delta m^2_{
m atm}$, Δm^2_{\odot}

S.T.P., A.Yu. Smirnov, 1994

Convention: $m_1 < m_2 < m_3$ - NMO, $m_3 < m_1 < m_2$ - IMO

$$\Delta m_{\odot}^2 \equiv \Delta m_{21}^2, \quad m_2 = \sqrt{m_1^2 + \Delta m_{\odot}^2}$$

while either

$$\Delta m_{\rm atm}^2 \equiv \Delta m_{31}^2 > 0$$
, $m_3 = \sqrt{m_1^2 + \Delta m_{\rm atm}^2}$, normal mass ordering, or

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{32}^2 < 0, \quad m_1 = \sqrt{m_3^2 + |\Delta m_{\rm atm}^2| - \Delta m_{\odot}^2}, \quad \text{inverted mass ordering}$

The neutrino mass spectrum –

Normal hierarchical (NH) if $m_1 \ll m_2 \ll m_3$,

Inverted hierarchical (IH) if $m_3 \ll m_1 \cong m_2$,

Quasi-degenerate (QD) if $m_1 \cong m_2 \cong m_3 = m$, $m_j^2 >> |\Delta m_{atm}^2|$; $m_j \gtrsim 0.1 \text{ eV}$

Given $|\Delta m^2_{\rm atm}|$, Δm^2_{\odot} , θ_{\odot} , θ_{13} ,

|<m>| = |<m>| (m_{min}, α_{21} , α_{31} ; S), S = NO(NH), IO(IH).

$$\begin{split} A(\beta\beta)_{0\nu} &\sim < m > \text{ M(A,Z), } \qquad \text{M(A,Z) - NME,} \\ || &\cong \left| \sqrt{\Delta m_{\odot}^2} \sin^2 \theta_{12} e^{i\alpha} + \sqrt{\Delta m_{31}^2} \sin^2 \theta_{13} e^{i\beta_M} \right| , \ m_1 \ll m_2 \ll m_3 \text{ (NH),} \\ || &\cong \sqrt{m_3^2 + \Delta m_{23}^2} \left| \cos^2 \theta_{12} + e^{i\alpha} \sin^2 \theta_{12} \right| , \ m_3 < (\ll) m_1 < m_2 \text{ (IH),} \\ || &\simeq m \left| \cos^2 \theta_{12} + e^{i\alpha} \sin^2 \theta_{12} \right| , \ m_{1,2,3} \cong m \gtrsim 0.10 \text{ eV (QD),} \\ \theta_{12} \equiv \theta_{\odot}, \ \theta_{13} \text{-CHOOZ;} \ \alpha \equiv \alpha_{21}, \ \beta_M \equiv \alpha_{31}. \end{split}$$

CP-invariance: $\alpha = 0, \pm \pi, \beta_M = 0, \pm \pi;$

 $|\!<\!m\!>\!|$ \lesssim 5 imes 10⁻³ eV, NH;

$$\begin{split} \sqrt{\Delta m_{23}^2}\cos 2\theta_{12} &\cong 0.013 \text{ eV} \lesssim |<\!m\!>| \lesssim \sqrt{\Delta m_{23}^2} \cong 0.055 \text{ eV}, \quad \text{IH}; \\ m\cos 2\theta_{12} \lesssim |<\!m\!>| \lesssim m, \ m \gtrsim 0.10 \text{ eV}, \quad \text{QD}. \end{split}$$

Oscillation Parameters

$$\begin{split} \Delta m_{\odot}^2 &= 8.0 \times 10^{-5} \text{ eV}^2 , \quad 3\sigma(\Delta m_{\odot}^2) = 12\% ,\\ \sin^2 \theta_{\odot} &= 0.30 , \quad 3\sigma(\sin^2 \theta_{\odot}) = 27\% ,\\ |\Delta m_{\text{atm}}^2| &= 2.5 \times 10^{-3} \text{ eV} , \quad 3\sigma(|\Delta m_{\text{atm}}^2|) = 28\%. \end{split}$$

Future:

3 kTy KamLAND: $3\sigma(\Delta m_{\odot}^2) = 7\%$, $3\sigma(\sin^2\theta_{\odot}) = 18\%$; A. Bandyopadhyay et al., hep-ph/0410283

SK-Gd (0.1% Gd: 43×(KL $\bar{\nu}_e$ rate)), 3y: $3\sigma(\Delta m_{\odot}^2) \cong 4\%$ S. Choubey, S.T.P., hep-ph/0404103; J. Beacom and M. Vagins, hep-ph/0309300

KL type reactor $\bar{\nu}_e$ detector, $L \sim 60$ km, ~ 60 GW kTy: $3\sigma(\sin^2\theta_{\odot}) \cong 12\%$ A. Bandyopadhyay et al., hep-ph/0410283 and hep-ph/0302243; H. Minakata et al., hep-ph/0407326

T2K (SK): $3\sigma(|\Delta m_{\rm atm}^2|) \cong 6\%$

sgn(Δm_{atm}^2): ν_{atm} experiments, studying the subdominant $\nu_{\mu(e)} \rightarrow \nu_{e(\mu)}$ and $\bar{\nu}_{\mu(e)} \rightarrow \bar{\nu}_{e(\mu)}$ oscillations; LBL ν -oscillation experiments (T2K, NO ν A); ν -factory.

 $\sin^2 \theta_{13}$: reactor $\bar{\nu}_e$ experiments, $L \sim (1-2)$ km: Double CHOOZ, Daya-Bay, KASKA,... - factor (5 - 10).

Absolute Neutrino Mass Measurements

The Troitzk and Mainz ³H β -decay experiments

 $m_{
u_e} < 2.3 \text{ eV}$ (95% C.L.)

There are prospects to reach sensitivity

KATRIN : $m_{
u_e} \sim 0.2 \, \, {
m eV}$

Cosmological and astrophysical data: the WMAP result combined with data from large scale structure surveys (2dFGRS, SDSS)

$$\sum_j m_j \equiv \Sigma < (0.4 - 1.7) \,\, {
m eV}$$

The WMAP and future PLANCK experiments can be sensitive to

$$\sum_j m_j \cong 0.4 \text{ eV}$$

Data on weak lensing of galaxies by large scale structure, combined with data from the WMAP and PLANCK experiments may allow to determine

$$\sum_j m_j$$
: $\delta \cong 0.04$ eV.

S. Pascoli, S.T.P., 2006

The current 2σ ranges of values of the parameters used.

S. Pascoli, S.T.P., 2006

 $\begin{aligned} \sin^2\theta_{13} &= 0.015 \pm 0.006; \ 1\sigma(\Delta m_{\odot}^2) = 4\%, \ 1\sigma(\sin^2\theta_{\odot}) = 4\%, \ 1\sigma(|\Delta m_{\rm atm}^2|) = 6\%; \\ 2\sigma(|<\!m\!>\!| \) \text{ used.} \end{aligned}$

 $3\sigma(\Delta m_{\odot}^2) = 6\%$, $3\sigma(\sin^2\theta_{\odot}) = 12\%$, $3\sigma(|\Delta m_{atm}^2|) = 18\%$.

Nuclear Matrix Element Uncertainty

 $|\!<\!m\!>\!|\ = \zeta \ ((|\!<\!m\!>\!|_{exp})_{\min} \pm \Delta) \ , \ \ \zeta \ge 1,$

 $(|\langle m \rangle|_{exp})_{MIN}$ - obtained with the maximal physically allowed value of NME. A measurement of the $(\beta\beta)_{0\nu}$ -decay half-life time

 $(| < m > |_{exp})_{MIN} - \Delta \le | < m > |_{exp} \le \zeta((| < m > |_{exp})_{MIN} + \Delta)$.

The estimated range of ζ^2 :

⁴⁸Ca, $\zeta^2 \simeq 3.5$ ⁷⁶Ge, $\zeta^2 \simeq 10$ ⁸²Se, $\zeta^2 \simeq 10$ ¹³⁰Te, $\zeta^2 \simeq 38.7$

S. Elliot, P. Vogel, 2002

NH vs IH (QD):

$$\zeta \mid <\!m\!>\!\mid \stackrel{\rm NH}{\max} < \mid <\!m\!>\!\mid \stackrel{
m IH(QD)}{\min} \;,\; \zeta \ge 1$$
 .

IH vs QD:

$$\zeta \;|\!<\!m\!>\!| \; \mathop{}_{\max}^{\rm IH} < \!|\!<\!m\!>\!| \; \mathop{}_{\min}^{\rm QD} \;, \; \zeta \ge 1$$
 .

S. Pascoli, S.T.P., W. Rodejohann, 2003

Method of Analysis

$$\begin{split} \Gamma_{\rm th} &= G \left| \mathcal{M} \right|^2 \left(\left| < m > \right| \ (\mathbf{x}) \right)^2 \,, \ \mathbf{x} = \left(\mathbf{x}_{\rm osc}, \mathbf{x}_{\beta\beta}^{0\nu} \right) \\ \mathbf{x}_{\rm osc} &= \left(\theta_{12}, \theta_{13}, \left| \Delta \mathbf{m}_{31}^2 \right|, \Delta \mathbf{m}_{21}^2 \right) , \\ \mathbf{x}_{\beta\beta}^{0\nu} &= \left(m_0, \operatorname{sgn}(\Delta \mathbf{m}_{31}^2), \alpha_{21}, \alpha_{31} \right) . \end{split}$$
$$| < m > | \ ^{\text{obs}} \equiv \sqrt{\frac{\Gamma_{\text{obs}}}{G}} \frac{1}{|\mathcal{M}_0|} \,, \quad \sigma_{\beta\beta} = \frac{1}{2} \frac{1}{\sqrt{\Gamma_{\text{obs}}G}} \frac{1}{|\mathcal{M}_0|} \,\sigma(\Gamma_{\text{obs}}) \,, \end{split}$$

 $|\mathcal{M}_0|$ is some nominal value of the NME.

$$\chi^{2}(\mathbf{x}_{\beta\beta}^{0\nu},\mathbf{F}) = \min_{\boldsymbol{\xi} \in [1/\sqrt{F},\sqrt{F}]} \frac{\left[\boldsymbol{\xi} \left| \langle m \rangle \right| \, \left(\mathbf{x} \right) - \left| \langle m \rangle \right|^{\text{obs}} \right]^{2}}{\sigma_{\beta\beta}^{2} + \boldsymbol{\xi}^{2} \sigma_{\text{th}}^{2}}.$$
$$\boldsymbol{\xi} \equiv \frac{|\mathcal{M}|}{|\mathcal{M}_{0}|}, \quad \boldsymbol{\xi} = [1/\sqrt{F},\sqrt{F}], \quad F \ge 1,$$

 $|\mathcal{M}|$ is the *true* value of the NME.

S. Pascoli, S.T.P., T. Schwetz, hep-ph/0505226

S. Pascoli, S.T.P., T. Schwetz, hep-ph/0505226

Distinguishing Between Different Spectra

Majorana CPV Phases and | < m > |

IH spectrum: $m_{\min} < 0.01 \text{ eV}$, $\sin^2 \theta - \text{ negligible}$

$$\sqrt{\Delta m_{
m atm}^2} |\cos 2 heta_\odot| \le |\!<\!m\!>\!| \ \le \sqrt{\Delta m_{
m atm}^2}$$

"Just CP-violating" region:

$$\begin{aligned} (|< m >|_{\exp})_{\max} < \sqrt{(\Delta m_{\text{atm}}^2)_{\min}} , \\ (|< m >|_{\exp})_{\min} > \sqrt{(\Delta m_{\text{atm}}^2)_{\max}} (\cos 2\theta_{\odot})_{\max} , \\ |< m >| &= \zeta ((|< m >|_{\exp})_{\min} \pm \Delta) , \quad \zeta \ge 1 \end{aligned}$$

Necessary condition for establishing CP-violation:

$$1 \leq \zeta < \frac{\sqrt{(\Delta m_{\rm atm}^2)_{\rm min}}}{\sqrt{(\Delta m_{\rm atm}^2)_{\rm max}} \left(\cos 2\theta_\odot\right)_{\rm max} + 2\Delta} \simeq \frac{1}{\left(\cos 2\theta_\odot\right)_{\rm max}}$$

QD spectrum, $m_{1,2,3} \simeq m_0 \gtrsim 0.20$ eV - similar condition: $\Delta m_{\text{atm}}^2 \rightarrow m_0^2$.

CPV can be established provided

- $|\!<\!m\!>|$ measured with Δ \lesssim 15% ;
- $\Delta m^2_{\rm atm}$ (IH) or m_0 (QD) measured with $\delta \lesssim 10\%$;
- $-\xi \lesssim 1.5$;
- α_{21} (QD): in the interval $\sim [\frac{\pi}{4} \frac{3\pi}{4}]$, or $\sim [\frac{5\pi}{4} \frac{3\pi}{2}]$;
- $\tan^2 heta_\odot \gtrsim 0.40$.

S. Pascoli, S.T.P., W. Rodejohann, 2002

S. Pascoli, S.T.P., L. Wolfenstein, 2002

S. Pascoli, S.T.P., T. Schwetz, hep-ph/0505226

No "No-go for detecting CP-Violation via $(\beta\beta)_{0\nu}$ -decay"

V. Barger *et al.*, 2002

strong in-medium modification of the basic process $dd \rightarrow uue^-e^-(\bar{v}_e\bar{v}_e)$

virtual excitation of states of all multipolarities in (A,Z+1) nucleus

V. Rodin, talk at Gran Sasso, 2006

On the NME Uncertainties

The $(\beta\beta)_{0\nu}$ -decay half-life

$$(T_{1/2}^{0\nu}(A,Z))^{-1} = |<\!m>|^2 |M^{0\nu}(A,Z)|^2 G^{0\nu}(E_0,Z),$$

 $G^{0
u}(E_0,Z)$, E_0 - known phase-space factor and energy release.

If we use a model M of the calculation of NME,

$$| < m > |_{M}^{2}(A, Z) = \frac{1}{T_{1/2}^{0\nu}(A, Z) |M_{M}^{0\nu}(A, Z)|^{2} G^{0\nu}(E_{0}, Z)}.$$

Suppose $(\beta\beta)_{0\nu}$ -decay of several nuclei is observed.

| < m > | cannot depend on parent nucleus (A_j, Z_j) .

If the light Majorana ν -exchange - dominant mechanism of $(\beta\beta)_{0\nu}$ -decay, model M for NME can be correct only if

$$| < m > | {}^{2}_{M}(A_{1}, Z_{1}) \simeq | < m > | {}^{2}_{M}(A_{2}, Z_{2}) = ...$$

For different models and the same nucleus (A, Z),

$$\begin{split} || \stackrel{2}{_{M_{1}}}(A,Z) | M_{M_{1}}^{0\nu}(A,Z) |^{2} &= || \stackrel{2}{_{M_{2}}}(A,Z) | M_{M_{2}}^{0\nu}(A,Z) |^{2} &= \dots, \\ || \stackrel{2}{_{M_{2}}}(A,Z) &= \eta^{M_{2};M_{1}}(A,Z) || \stackrel{2}{_{M_{1}}}(A,Z) |, \\ \eta^{M_{2};M_{1}}(A,Z) &= \frac{|M_{M_{1}}^{0\nu}(A,Z)|^{2}}{|M_{M_{2}}^{0\nu}(A,Z)|^{2}} . \end{split}$$

Nucleus	$\eta^{M_2;M_1}$	$\eta^{M_{3};M_{1}}$	$\eta^{M_2;M_3}$
⁷⁶ Ge	0.37	0.19	1.93
⁸² Se		0.38	
¹⁰⁰ Mo			6.56
¹³⁰ Te	0.74	0.10	7.32
¹³⁶ Xe	0.53	0.02	22.42

 M_1 (SM): E. Caurier et al., 1999; M_2 (QRPA): V. Rodin et al., 2003; M_3 (QRPA): O. Civatarese and J. Suhonen, 2003.

The observation of $(\beta\beta)_{0\nu}$ -decay of at least 3 nuclei would be important for the solution of the problem of NME.

Table 2 suggests: ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe.

If for some model M

 $| < m > |_{M}^{2}(A_{1}, Z_{1}) \simeq | < m > |_{M}^{2}(A_{2}, Z_{2}) = ... \equiv | < m > |_{0}^{2},$

 $|<\!m>|_{0}$ - the true value (most likely).

Strong dependence of NME on (A, Z) - crucial for the test.

S. M. Bilenky, S.T.P., 2004

Encouraging results on the problem of calculating the NME ($\xi \leq 1.5$) have been obtained recently in

V. A. Rodin, A. Faessler, F. Simkovic, P. Vogel, nucl-th/0503063

The errors have no statistical origin, just illustrate the degree of the variation of the results by changing the basis size. The "systematic error" of the QRPA (due to neglecting many-particle configurations): $(3 \div 5) \times 10\%$, can vary from one nucleus to another.

Alternative Mechanisms of $(\beta\beta)_{0\nu}$ -Decay

- Light neutrino exchange
- R-parity violating SUSY
- Heavy neutrino exchange
- Right-handed weak currents

Majorana CP-Violating Phases, Leptogenesis and $(\beta\beta)_{0\nu}$ -Decay

M_{ν} from the See-Saw Mechanism

P. Minkowski, 1977. M. Gell-Mann, P. Ramond, R. Slansky, 1979;

T. Yanagida, 1979;

R. Mohapatra, G. Senjanovic, 1980.

• Explains the smallness of ν -masses.

• Through leptogenesis theory links the ν -mass generation to the generation of baryon asymmetry of the Universe Y_B .

S. Fukugita, T. Yanagida, 1986.

• In SUSY GUT's with see-saw mechanism of ν -mass generation, the LFV decays

 $\mu \rightarrow e + \gamma, \quad \tau \rightarrow \mu + \gamma, \quad \tau \rightarrow e + \gamma \ , \ \text{etc.}$

are predicted to take place with rates within the reach of present and future experiments.

F. Borzumati, A. Masiero, 1986.

• The ν_j are Majorana particles; $(\beta\beta)_{0\nu}$ -decay is allowed.

See-Saw: Dirac ν -mass m_D + Majorana mass M_R for N_R

Leptogenesis

$$Y_B = \frac{n_B - n_{\bar{B}}}{S} \sim 6 \times 10^{-10}$$

 $Y_B \cong -10^{-2} \quad \kappa \epsilon$
W. Buchmüller, M. Plümacher, 1998
W. Buchmüller, P. Di Bari, M. Plümacher, 2004

 κ - efficiency factor; $\kappa \sim 10^{-1} - 10^{-3}$: $\varepsilon \gtrsim 10^{-7}$.

 \mathcal{E} : CP-, L- violating asymmetry generated in out of equilibrium $N_{Rj}-$ decays in the early Universe,

G. F. Giudice et al., 2004

Assume:

- $M_{SUSY} \sim (100 600)$ GeV (LHC); SUSY broken at $M_X > M_R$.
- M_R : $M_1 \ll M_2 \ll M_3$, $M_3 \gtrsim 5 \times 10^{13} \text{ GeV (GUT)}$. $(m_{\nu} \cong m_D^2/M_R; m_D \sim 175 \text{ GeV}, m_{\nu} \sim 5 \times 10^{-2} \text{ eV}$, then $M_R \sim 6 \times 10^{14} \text{ GeV}$.)

Impose:

- $BR(\mu \rightarrow e + \gamma) < 1.2 \times 10^{-11}$ (MEGA)
- Leptogenesis successful: BAU correctly reproduced.
- ω leptogenesis CPV parameter; ω complex.

IH spectrum:

A. $Y_{\nu 21} = 0$:

$$\tan \omega = e^{-i\alpha/2} \tan \theta_{12}$$

B. $\mathbf{Y}_{\nu 22} \cong \mathbf{0}$, neglecting s_{13} :

$$\tan \omega = -e^{-i\alpha/2} \, \cot \theta_{12}.$$

Leptogenesis: ω -complex; thus $\alpha \neq 0, \pi$, CP-violating values

$$| < m > | \cong \sqrt{\Delta m_{13}^2 \left| \cos^2 \theta_{12} + e^{i\alpha} \sin^2 \theta_{12} \right|}$$

S.T. Petcov, T. Shindou, 2006

Figure 6: Predicted values of Y_B and $B(\mu \to e\gamma)$ for $s_{13} = 0$. The SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

S.T. Petcov, T. Shindou, 2006

Conclusions

 $(\beta\beta)_{0\nu}$ -decay experiments have remarkable physics potential:

- Can establish the Majorana nature of ν_j
- Can provide unique information on the ν mass spectrum
- Can provide unique information on the absolute scale of ν masses
- Can provide information on the Majorana CPV phases

The knowledge of the values of the relevant $(\beta\beta)_{0\nu}$ -decay NME with a sufficiently small uncertainty is crucial for obtaining quantitative information on the neutrino mass and mixing parameters from a measurement of $\Gamma(\beta\beta)_{0\nu}$.

The precision in the measurement of $\Gamma(\beta\beta)_{0\nu}$ will also be very important for the quantitative interpretation of the data.

Coordinated attack on the NME problem needed.

There are relatively few theorists working in $\beta\beta$ decay, and their efforts have been fragmented.

More collaborations, postdoctoral and Ph.D projects, meetings, etc., would make progress faster.

- How to reduce the uncertainty in $M^{0\nu}$ to $\approx 10 \div 20\%$?
- The accuracy is not reachable in the present nuclear models.
- New developments in the nuclear structure theory are needed.
- Long-term theoretical R&D programme.
- Diversification of independent research groups working in the field would be very useful.
- Any monopoly on the NME calculations must be avoided.
- Support from experimental study of charge-exchange reactions, muon capture, etc., is HIGHLY REQUIRED.

V. Rodin, talk at ILIAS Meeting, 2006