New parameterization in muon decay and type of emitted neutrino

Hiroyuki Nishiura (Osaka Institute of Technology)

- 1. Introduction
- 2. General framework
- 3. New parameterization of the e^+ energy spectrum
- 4. Analysis by the TWIST group
- 5. How to determine the type of neutrino from muon decay

Ref. 1) M.Doi, T. Kotani and H.N, Prog.Theor.Phys.114(2005),845-871 (hep-ph/0502136)

NDM06 Symposium on Neutrino, Dark Matter and Dark Energy, Sept.4th,2006 at Paris

1. Introduction

- ν -less DBD is a best subject to determine the type of ν (the Dirac or Majorana type).
- As a complementary study, it is meaningful at present to survey the possibility of whether μ decay can be used as a tool to determine the type of ν .
- We propose a new parameterization of the e⁺ energy spectrum of the µ⁺ decay that is suitable for investigating a deviation from the standard model and discriminating between the types of ν's.
- We propose a method in which the χ² value experimentally determined by assuming the Dirac type ν is compared with those determined by the Majorana type ν. This may provide a test to determine the type of ν, although it is indirect.

2. General framework

We assume the following effective weak interaction Hamiltonian:

$$\mathcal{H}_W(x) = \frac{G_F}{\sqrt{2}} \{ j_{eL \alpha}^{\dagger} j_{\mu L}^{\alpha} + \frac{\lambda}{j_{eR \alpha}^{\dagger}} j_{\mu R}^{\alpha} + \frac{\eta}{j_{eR \alpha}^{\dagger}} j_{\mu L}^{\alpha} + \frac{\kappa}{j_{eL \alpha}^{\dagger}} j_{\mu R}^{\alpha} \} + \text{H.c.} \quad (1)$$

- This is expected from the gauge models that contain both V A and V + A currents: The appearance of the coupling constant λ is due to W_R, while terms with η and κ come from the possible mixing between W_L and W_R.
- In the $SU(2)_L \times SU(2)_R \times U(1)$ gauge model, $\kappa = \eta$

The left- and right-handed charged weak leptonic currents:

$$j_{\ell L \alpha} = \sum_{j=1}^{2n} \overline{E_{\ell}} \gamma_{\alpha} (1 - \gamma_5) U_{\ell j} N_j, \quad j_{\ell R \alpha} = \sum_{j=1}^{2n} \overline{E_{\ell}} \gamma_{\alpha} (1 + \gamma_5) V_{\ell j} N_j \quad (2)$$

for the case of the *n* generations. Here $U_{\ell j}$ and $V_{\ell j}$ are, respectively, the left- and right-handed lepton mixing matrices. E_{ℓ} is the mass eigenstate of charged leptons and N_j is of neutrinos with mass m_j .

3.1 Differential decay rate for normal μ^{\pm} decay • The μ^{\pm} decay takes place as $\mu^{\pm} \rightarrow e^{\pm} + N_i + \overline{N_k},$ (3)• $\overline{N_k}$ represents an antineutrino for the Dirac ν case, but it should be understood as N_k for the Majorana ν case. If the radiative corrections are not included, the differential decay rate for emitted e^{\pm} in the rest frame of polarized μ^{\pm} is expressed as $\frac{d^2\Gamma(\mu^{\pm} \to e^{\pm}\nu\overline{\nu})}{dx\,d\cos\theta} = \left(\frac{m_{\mu}\,G_F^2\,W^4}{6\cdot4\,(\pi)^3}\right)\,A\,\sqrt{x^2 - x_0^2}\,D(x,\,\theta)$ (4) where $x = \frac{E}{W}, x_0 = \frac{m_e}{W} = 9.65 \times 10^{-3}, W = \frac{m_{\mu}^2 + m_e^2}{2 m_{\mu}} = 52.8 \text{ MeV}.$ (5)The angle θ is the direction of the emitted e^{\pm} with respect to the muon polarization vector $\vec{P_{\mu}}$ at the instant of the μ^{\pm} decay.

 \checkmark The allowed range of x is limited kinematically as

$$x_0 \leq x \leq x_{\max} = (1 - r_{jk}^2) \simeq 1$$
 with $r_{jk}^2 = \frac{(m_j + m_k)^2}{2m_\mu W}$. (6)

3.2 Energy spectrum of e^+ in the μ^+ decay

J The e^+ energy spectrum part is expressed as

$$xD(x, \theta) = x[N(x) + P_{\mu} \cos \theta P(x)]$$
(7)

where $P_{\mu} = |\vec{P_{\mu}}|$ is the rate of muon polarization, and the isotropic part N(x) and anisotropic part P(x) are

$$N(x) = \frac{1}{A} \left[a_{+}(3x - 2x^{2}) + 12(k_{+c} + \varepsilon_{m} k_{+m}) x (1 - x) \right]$$
(8)

$$P(x) = \frac{1}{A} \left[a_{-}(-x+2x^{2}) + 12(k_{-c} + \varepsilon_{m}k_{-m})x(1-x) \right]$$
(9)

- We ignore some small terms proprotional to m_e and neutrino masses.
- The decay formulae for the Dirac and Majorana ν 's are obtained by setting $\varepsilon_m = 0$ and $\varepsilon_m = 1$, respectively.
- The first terms with setting $A = a_+ = a_- = 1$ in these N(x) and P(x) correspond to the theoritical predictions from the standard model.
- The well-known Michel parameterization is obtained if we choose the normalization factor $A = A_{10} = a_+ + 2 k_{+c}$.

3.3 Coefficients

In the Dirac ν case:

$$a_{\pm} = (1 \pm \lambda^2)$$
 , $k_{\pm c} = (\kappa^2 \pm \eta^2)/2$ (10)

$$a_{\pm} = \left[\left(1 - \overline{u_e}^2 \right) \left(1 - \overline{u_\mu}^2 \right) \pm \lambda^2 \overline{v_e}^2 \overline{v_\mu}^2 \right]$$

$$k_{\pm c} = \left[\kappa^2 \left(1 - \overline{u_e}^2 \right) \overline{v_\mu}^2 \pm \eta^2 \overline{v_e}^2 \left(1 - \overline{u_\mu}^2 \right) \right] / 2 \qquad (11)$$

$$k_{\pm m} = \left[\kappa^2 \left| \overline{w_{e\mu}} \right|^2 \pm \eta^2 \left| \overline{w_{e\mu h}} \right|^2 \right] / 2$$

• $\overline{u_{\ell}}^2$, $\overline{v_{\ell}}^2$, $\overline{w_{e\,\mu}}$ and $\overline{w_{e\,\mu\,h}}$ are small quantities: We assume the existence of heavy Majorana ν 's which are not emitted in the μ^{\pm} decay. Then, we have $\Sigma'_j |U_{\ell j}|^2 = 1 - \overline{u_{\ell}}^2$ and $\Sigma'_j |V_{\ell j}|^2 = \overline{v_{\ell}}^2$ where the primed sums are taken over only the light ν 's. In addition, the following products of U and V appear: $\overline{w_{e\mu}} \equiv \Sigma'_j U_{ej} V_{\mu j}$ and $\overline{w_{e\mu\,h}} \equiv \Sigma'_k V_{ek} U_{\mu k}$.

3.4 New parameterization of energy spectrum

We have proposed a new parameterization that directly represents deviations from the standard model. Here we present it taking a choice of normarization factor $A_{10} = a_+ + 2 k_{+c}$. In this case, the well-known Michel parameterization is obtained.

If we assume the $SU(2)_L \times SU(2)_R \times U(1)$ model, our expression for the energy spectrum of e^+ is;

$$xD(x,\theta) = x^{2}(3-2x) + 2\rho_{c}x^{2}(3-4x) + 12\varepsilon_{m}\rho_{m}x^{2}(1-x) + P_{\mu}\xi\cos\theta x^{2}(-1+2x)$$
(12)

where

$$\rho_c = \frac{k_{+c}}{A_{10}} > 0, \quad \rho_m = \frac{k_{+m}}{A_{10}} > 0, \quad \text{and} \quad \xi = \frac{a_- + 2k_{-c}}{A_{10}}.$$
(13)

$$\xi = \frac{1 - \lambda^2}{1 + \lambda^2 + 2\eta^2}$$
for the Dirac ν case, (14)
$$\xi \simeq 1$$
for the Majorana ν case, (15)
$$\xi = 1$$
for the standard model. (16)

4.1 Analysis by the TWIST group (Dirac ν case)

The experimental data have been analyzed by the TWIST group using expressions based on the Michel parameter ρ_M in which the deviation of ρ_M from 0.75 represents the deviation from the standard model.

$$xD(x,\theta) = 6x^{2}[(1-x) + \frac{2}{9}\rho_{M}(4x-3)] + P_{\mu}\xi\,\cos\theta\,x^{2}(-1+2x)$$
(17)

We propose to use the deviation of the spectrum from the SM spectrum $x^2(3-2x)$. i.e. our parameterization is

$$xD(x,\theta) = \frac{x^2(3-2x)}{2} + \rho_c x^2(6-8x) + P_\mu \xi \cos \theta x^2(-1+2x)$$

• The ρ_M is related to our ρ_c as $\rho_M = 0.75 - \frac{3}{2}\rho_c$.

4.2 $A = A_{1,0}$ case vs $A = A_{0,0}$ case Analysis by TWIST group: use $A = A_{1,0}$ for the normarization factor $xD(x, \frac{\pi}{2}) = x^2(3-2x) + \rho_c x^2(6-8x)$ for $A = A_{1,0} = a_+ + 2k_{+c}$ If we use $A = A_{0,0}$, $xD(x, \frac{\pi}{2}) = x^2(3-2x) + \rho_c 12x^2(1-x)$ for $A = A_{0,0} = a_+$ $x^2(3-2x)$ vs $x^2(6-8x)$ $x^{2}(3-2x)$ vs $12x^{2}(1-x)$ 1.75 0.5 1.5 1.25 1 -0.5 0.75 - 1 0.5 -1.5 0.25 -2<u>-</u>0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $A = A_{1,0}$ case $A = A_{0,0}$ case \Downarrow

- In the case of $A = A_{0,0}$, we will hardly obtain a negative value for ρ_c experimentally.
- Why was the negative value for ρ_c obtained experimentally in the case of $A = A_{1,0}$?

5. How to determine the type of neutrino

Our basic idea : χ^2 - fitting of energy spectrum $xD(x, = \frac{\pi}{2})$ through theoretical expressions.

- \Rightarrow compare χ^2 value for the Dirac ν (χ^2_d) with that for the Majorana ν (χ^2_m)
 - If χ_m^2 is much smaller than χ_d^2 , there is a higher probability that ν 's are of the Majorana type.
 - The normalization factor A can include artificial constants n, ℓ and p:

$$A = A_{n,\ell,p} = a_{+} + 2nk_{+c} + 2\ell\varepsilon_m k_{+m} + 2p\varepsilon_m \lambda d_r$$

We parameterize the energy srectrum in order to see a deviation from the SM. Here we keep the x_0 terms, ($x_0 = \frac{m_e}{W} = 9.65 \times 10^{-3}$):

$$x_p D(x, \frac{\pi}{2}) = x_p (3x - 2x^2 - x_0^2) + H(x), \qquad x_p \equiv \sqrt{x^2 - x_0^2}$$
 (19)

Dirac ν case:

$$H(x) = \rho_c x_p \{ (12 - 6n)x - (12 - 4n)x^2 + 2nx_0^2 \}$$

$$\rho_c = \frac{1}{2}(\kappa^2 + \eta^2) > 0$$

$$H(x) = (\rho_c + \rho_m) x_p \{ (12 - 6q - 6x_0\gamma)x - (12 - 4q)x^2 + 2qx_0^2 + 6x_0\gamma \}$$

$$\begin{split} \rho_c &\simeq \frac{1}{2} (\kappa^2 \,\overline{v_{\mu}}^2 + \eta^2 \,\overline{v_e}^2) > 0, \quad \rho_m \simeq \frac{1}{2} (\kappa^2 \,|\overline{w_{e\mu}}|^2 + \eta^2 \,|\overline{w_{e\mu\,h}}|^2) > 0, \\ q &\equiv \frac{n\rho_c + \ell\rho_m + p\eta_m}{\rho_c + \rho_m} \quad \text{is also a artificial constant,} \\ \text{and } \gamma &\equiv \frac{\eta_m}{\rho_c + \rho_m} \simeq O(1) \text{ with } \eta_m \simeq \lambda d_r = \lambda \frac{1}{2} \operatorname{Re}\{(\overline{w_{e\mu}})^*(\overline{w_{e\mu\,h}})\} \end{split}$$

 \Rightarrow Some differences appear only in the $x_0\gamma$ terms, although they may be difficult to be directly detected experimentally.

Summary

We have surveyed the possibility of whether μ^+ decay can be used as a tool to determine the type of ν .

- Muon decay takes place irrespective of the type of neutrino.
- There is a difference in the energy spectra of emitted e^+ between the Dirac and Majorana ν cases.
- We propose a new parameterization of the e⁺ energy spectrum of the µ⁺ decay that is suitable for investigating a deviation from the standard model and discriminating between the types of ν's.

∜

We propose a method of discriminating the type of ν by using χ^2 -fitting of the e^+ energy spectrum: We propose a method in which the χ^2 value experimentally determined by assuming the Dirac type ν is compared with those determined by the Majorana type ν . This may provide a test to determine the type of ν , although it is indirect. However it may be difficult at present, because some differences appear only in the small $x_0\gamma$ terms.

Note 1. Normalization factor A

There are various possibilities for the choice of A, when experimental data are analyzed, although these choices differ only by rearrangements of the terms in the theoretical expression for the e^+ energy spectrum. e.g.

$$f(x) + w g(x) = (1 + nw) \{ f(x) + \frac{w}{1 + nw} [g(x) - nf(x)] \}$$

Use leading term f(x) and small deviation term wg(x) with weight w, then the unknown constant w is determined experimentally by minimizing the χ^2 -value defined by $\chi^2 = \Sigma_k \left[\frac{ad(x_k) - y_k}{a\sigma_k} \right]^2$.

• $y_k = f(x_k) + w g(x_k)$ is theoretical value. $d(x_k)$ and σ_k are, respectively, the corresponding experimental value of spectrum and its experimental error. Here *a* is introduced as a adjustable constant.

$$A = (1 + nw)$$
 case $\iff f(x) + \frac{w}{1 + nw}[g(x) - nf(x)]$ is used:

We can determine the evalue of the $\frac{w}{1+nw}$ experimentally. Here *n* is introduced as a artificial constant.

Note 2. Analysis by the TWIST group

The experimental data have been analyzed by the TWIST group using expressions based on the Michel parameters:

$$N(x) = 6 \Big[x(1-x) + \frac{2}{9} \rho_M \left(4x^2 - 3x - x_0^2 \right) + \eta_M x_0 (1-x) \Big]$$
(20)

$$P(x) = 2\xi_M \sqrt{x^2 - x_0^2} \Big[(1 - x) + \frac{2}{3} \delta_M \left(4x - 3 - r_0^2 \right) \Big], \qquad (21)$$

where $r_0^2 \equiv \frac{m_e^2}{m_\mu W} = \left(1 - \sqrt{1 - x_0^2}\right) = 4.66 \cdot 10^{-5}$.

- These expressions are presented for the Dirac neutrino case with $m_{\nu} = 0$. In the standard model, these parameters take definite values: $\rho_M = \delta_M = 0.75$, $\xi_M = 1$, and $\eta_M = 0$.
- In our model, there is no η_M term, even in the massive Dirac neutrino case, if we ignore terms proportional to m_{ν} . The reason why the $\eta_M \neq 0$ term appears in the Michel parameterization by Fetscher and Gerber is that it comes from the interference between the $(V \pm A)$ and $(S \pm P)$ (or T) interactions.
- The χ^2_d value was also reported as 1804,1814,1951,1965,1993 for 5 data sets with 1887 freedom.

Note 3. $A = A_{1,0}$ case, with ignoring x_0 terms

Dirac ν case:

$$xD(x,\frac{\pi}{2}) = x^2(3-2x) + \rho_c x^2(6-8x)$$

$$\rho_c = \frac{1}{2}(\kappa^2 + \eta^2) > 0$$

Majorana ν case:

$$xD(x, \frac{\pi}{2}) = x^2(3-2x) + \rho_c x^2(6-8x) + \rho_m 12x^2(1-x)$$

$$\overline{\rho_c \simeq \frac{1}{2} \left(\kappa^2 \,\overline{v_\mu}^2 + \eta^2 \,\overline{v_e}^2\right)} > 0, \quad \rho_m \simeq \frac{1}{2} \left(\kappa^2 \,|\overline{w_{e\mu}}|^2 + \eta^2 \,|\overline{w_{e\mu}\,h}|^2\right) > 0$$

Note 4. $A = A_{n,\ell}$ case, with ignoring x_0 terms

We present a analysis using a normalization factor which includes artificial constants n and ℓ as given by

$$A = A_{n,\ell} = a_{+} + 2nk_{+c} + 2\ell\varepsilon_{m}k_{+m}$$
(22)

Dirac *ν* case: *xD*(*x*, π/2) = *x*²(3 - 2*x*) + *ρ_cx*²{(12 - 6*n*) - (12 - 4*n*)*x*}
Majorana *ν* case: *xD*(*x*, π/2) = *x*²(3 - 2*x*) + (*ρ_c* + *ρ_m*)*x*²{(12 - 6*q*) - (12 - 4*q*)*x*}
Here *q* = n*ρ_c* + *ℓρ_m*/*ρ_c* + *ρ_m* is also a artificial constant.

We can't determine the type of ν because the x dependences are the same.

 \Rightarrow Some different *x*-dependences appear in x_0 terms which was neglected in the present analysis.