# Nuclear Shell-Model calculations for the LSP scattering cross sections of nuclei

Jussi Toivanen

Department of Physics, University of Jyväskylä

## NDM06 Paris, France, September 3 - 9, 2006

Contents:

- Motivation
- Theoretical Detection Rates for Cold Dark Matter (CDM)
- Improving the CDM nuclear structure part: Very Large Shell Model calculations

# Motivation: Constituents of the Dark Matter

#### Dark Matter =



#### Process

LSP-nucleon neutral-current scattering in the detector

 $\downarrow$ 

## Measure

Nuclear recoil signature

 $\uparrow$ 

## Signature

photon, phonon, ionisation

#### Detector nuclei

<sup>73</sup>Ge, <sup>71</sup>Ga, <sup>129</sup>Xe, <sup>131</sup>Xe etc.





**Our Motivation**: Contradiction between the DAMA and the rest

NUCLEAR-STRUCTURE EF-FECT?

ASSUME: WIMP=LSP=Lightest Supersymmetric Particle  $\equiv \chi$  $\chi = \alpha \tilde{B} + \beta \tilde{W}_3 + \gamma \tilde{H}_1 + \delta \tilde{H}_2$ 



Folding with Maxwellian distribution

$$R = \frac{dN}{dt} = \frac{\rho(0)}{m_{\chi}} \frac{m_{\text{det}}}{Am_{\text{p}}} \int f(\mathbf{v} + \mathbf{v}_{\text{E}}) v\sigma(v) d^3 v,$$

 $v_E$  = Earth's velocity with respect to the galactic center  $v + v_E$  = LSP's velocity with respect to the galactic center

 $\Downarrow$  Some calculation . . .

$$R = R_0 \left[ (A0)^2 1 + 2A1A02 + (A1)^2 3 + A^2 \left( S0 - S1 \frac{A - 2Z}{A} \right)^2 4 \right] ,$$
  
$$R_0 = \frac{8.90 \times 10^8}{Am_{\chi} [\text{GeV}](m_p b)^2} \text{y}^{-1} \text{kg}^{-1}$$

 $D_i = D_i(m_{\chi}, Q_{\text{thr}})$  Integrated nuclear factors



#### Effective interactions from M. Hjorth-Jensen

Jussi Toivanen (JYFL, Finland)

## $^{127}$ I

At least six neutrons on  $0h_{11/2}$ , protons not restricted.

<sup>71</sup>Ga, <sup>73</sup>Ge

Configuration centroid based restrictions.

#### Dimensions

Max.  $2 \cdot 10^6$  practical (with non-parallelised version)

# Shell-Model Calculations (using EICODE 1.0)



#### DAMA

- Even nuclei only sensitive to the coherent channel part of LSP scttering (nuclear form factor)
- SUSY parametrisation that favors extreme spin dependence may explain the fact that DAMA sees CDM and other experiments not.

# Improving the nuclear structure part of LSP cross sections

#### Shell-Model code EICODE 1.0

Uses the same methods as code NATHAN of E. Caurier et al. (PRC 59, 2033 (1999))

$$H_{IJ} = A^o_{ij} B^{o'}_{\alpha\beta} V(o+o'), \quad I = i + \alpha, \quad J = j + \beta.$$

≙

1

## Density matrix element lists read from disk

| i | j | $A_{ij}$ | $\alpha$ | eta | $B_{lphaeta}$ |
|---|---|----------|----------|-----|---------------|
| 0 | 0 | 1.0      | 1        | 3   | 1.0           |
| 1 | 0 | -0.5     | 3        | 1   | -0.15         |
| 1 | 1 | 0.5      | 3        | 3   | -0.5          |

Works well with m-scheme ... not so well with J-scheme!

# Improving the nuclear structure part of LSP cross sections (or DBD calculations)

## Shell-Model code EICODE 2.0

- Replace element-by-element method with a more efficient method (published ... soon)
- Less floating point operations per matrix-vector product
- Lot of code optimisation, using standardised fast libraries
- More efficient CPU usage

# EICODE 2.0 Performance in pf-shell

# Scaling and efficiency



# Near future

#### Nuclear structure calculations

• Parallel SM program EICODE can solve full unrestricted calculations for heavy Iodine and Xenon isotopes (and others) in sdg<sub>7/2</sub>h<sub>11/2</sub>-shell.

1

# Interpreting the DAMA result vs. others

• Unrestricted description of <sup>127</sup>I ground and excited states, spectroscopy, for accurate nuclear structure

Inelastic LSP scattering

• Important for nuclei like  ${}^{83}$ Kr ( $E_2 = 9.4$  keV),  ${}^{127}$ I ( $E_2 = 58$  keV).

#### Xenon detectors

• Unrestricted wavefunctions for <sup>129</sup>Xe and <sup>131</sup>Xe ground and excited states.

## Limits of J-scheme Shell-Model

• J-scheme dimension 10<sup>9</sup> possible (200-500 CPUs)

# Shell-Model EICODE at Jyväskylä

- The code is a maturing general purpose J-scheme SM code
- Algorithmic improvements ⇒ speed increase 35-100 fold ⇒ huge J-scheme calculations!

# ∜

## Application: LSP scattering, elastic/inelastic

• We can calculate the nuclear structure parts (spin matrix elements) more accurately as we did before

## Another application: $0\nu$ double beta decay

•  $0 - 2\hbar\omega$  calculations for <sup>48</sup>Ca etc.