Present and future of SNO: SNO, SNO+ and SNOLAB

for the SNO Collaboration NDM, Paris, September 2006

v Reactions in SNO

HEP/DSNB Limits

 $\phi < 2.3 \times 10^4 \text{ cm}^{-2} \text{s}^{-1}$ (90% CL) HEP (improved by 6.5) $\phi < 70 \text{ cm}^{-2} \text{s}^{-1}$ (90% CL) DSNB

Astrophysical Journal, 2006

Fig. 5.— The distribution of events in the region of the ⁸B endpoint. There are two events in the *hep* signal box 14.3 MeV < T_{eff} < 20 MeV. Also shown are the estimated number of background events, including the systematic uncertainty, and the standard solar model prediction for the *hep* signal.

Also, "Long D₂O paper" on way

SNO Phase III (NCD Phase)

➢ ³He Proportional Counters ("NC Detectors")

40 Strings on 1-m grid

440 m total active length

Detection Principle

²H + $v_x \rightarrow p + n + v_x - 2.22$ MeV (NC)

 $^{3}\text{He} + n \rightarrow p + ^{3}\text{H} + 0.76 \text{ MeV}$

Physics Motivation

Event-by-event separation. Measure NC and CC in separate data streams.

Different systematic uncertainties than neutron capture on NaCl.

NCD array removes neutrons from CC, calibrates remainder. CC spectral shape.

Production Data: Nov. 2004 – Nov. 2006

Underground Facilities

SNOLAB Excavation Status

SNO+: SNO + Liquid Scintillator

Uses investment in SNO to build large multipurpose low background detector

- Low energy neutrino oscillations
- Precision solar neutrino measurement
- Geoneutrinos
- Reactor antineutrino oscillation measurement
- Active veto for large future dark matter or double beta decay measurements
- Supernova detector
- Large detector for ultrasensitive radiopurity measurements.

SNO+ Collaboration

Queen's

M. Chen, M. Boulay, X. Dai, E. Guillian, A. Hallin, P. Harvey, C. Hearns, C. Kraus, C. Lan, A. McDonald, V. Novikov, S. Quirk, P. Skensved, A. Wright, U. Bissbort Carleton K. Graham Laurentian D. Hallman, C. Virtue Trent J. Jury **SNOLAB** B. Cleveland, F. Duncan, R. Ford, I. Lawson **Brookhaven National Lab** a subset of the SNO D. Hahn, M. Yeh, A. Garnov, Idaho State University collaboration will K. Keeter continue with SNO+ University of Texas at Austin J. Klein University of Pennsylvania G. Beier (for Nd double beta decay) LIP Lisbon J. Maneira, N. Barros, S. Andringa **Technical University Munich** L. Oberauer, F. v. Feilitzsch (for Nd double beta decay) Sussex K. Zuber

• potential collaborators from outside SNO (Italy, Russia) have indicated some interest

Double Beta Decay: SNO++

- SNO plus liquid scintillator plus double beta isotopes: SNO++
- add $\beta\beta$ isotopes to liquid scintillator
 - dissolved Xe gas (2%)
 - organometallic chemical loading (Nd, Se, Te)
 - dispersion of nanoparticles (Nd₂O₃, TeO₂)
- enormous quantities (high statistics) and low backgrounds help compensate for the poor energy resolution of liquid scintillator
- possibly source in-source out capability

Test $< m_v > = 0.4 \text{ eV}$

Klapdor-Kleingrothaus et al., Phys. Lett. B **586**, 198, (2004)

maximum likelihood statistical test of the shape to extract 0v and 2v components...~240 units of $\Delta \chi^2$ significance after only 1 year!

Enriched Nd Scintillator

- at 1% loading (natural Nd), there is too much light absorption by Nd
 - 47±6 pe/MeV (from Monte Carlo)
- at 0.1% loading (isotopically enriched to 56%) our Monte Carlo predicts
 - 400±21 pe/MeV (from Monte Carlo)
 - good enough to do the experiment

SNO++ Double Beta Sensitivity

- insensitive to internal radon backgrounds
- insensitive to external backgrounds (2.6 MeV gamma)
- internal Th is the main concern
 - and 2ν background, of course
- homogeneous, well defined background model
- for m_v = 50 meV, 0v signal is ~60 events/yr in the upperhalf of the peak, with S:B about 1:1
 - based upon KamLAND Th levels in scintillator and known 2ν double beta decay backgrounds
 - gives a 5σ exclusion of 50 meV after one year
- ...shows the advantage of huge amounts of isotope, thus high statistics

Nd-150 Consortium

- SuperNEMO and SNO+, MOON and DCBA have joined together to try to maintain an existing French AVLIS facility that is capable of making 100's of kg of enriched Nd
 - a facility that enriched 204 kg of U (to 2.5% from 0.7%) in several hundred hours (i.e. about 1 week)

Low Energy Solar Neutrinos

Neutrino-Matter Interaction

 testing the vacuum-matter transition is sensitive to new physics

for $\Delta m^2 = 8 \times 10^{-5} \text{ eV}^2$, $\theta = 34^\circ$ N_e at the centre of the Sun \rightarrow E is 1-2 MeV

$$\begin{pmatrix} -\frac{\Delta m^2}{4E}\cos 2\theta + \sqrt{2}G_F N_e & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix}$$

Survival Probability Rise

SSM pep flux: uncertainty ±1.5% known source → precision test

improves precision on θ_{12} solar Δm^2 measurement

sensitive to new physics:

- non-standard interactions
- solar density perturbations
- mass-varying neutrinos
- CPT violation
- large θ_{13}
- sterile neutrino admixture

, stat + syst + SSM errors estimated

Solar Neutrino Survival Probability

New Physics

 $L^{NSI} = -2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\rho}\nu_{\beta})(\epsilon^{f\tilde{f}L}_{\alpha\beta}\bar{f}_L\gamma^{\rho}\tilde{f}_L + \epsilon^{f\tilde{f}R}_{\alpha\beta}\bar{f}_R\gamma^{\rho}\tilde{f}_R) + h.c. \text{ NC non-standard Lagrangian (1)}$

 $|\varepsilon_{\tau e}^{dP}| < 0.5$

- non-standard interactions
- MSW is linear in G_F and limits from v-scattering experiments ∝ g² aren't that restrictive
- mass-varying neutrinos

Friedland, Lunardini, Peña-Garay, hep-ph/0402266

pep solar neutrinos are at the "sweet spot" to test for new physics

 $\epsilon_{12} = -2 \epsilon_{e\tau} \sin \theta_{23} = -0.25$

Barger, Huber, Marfatia, hep-ph/0502196

Event Rates (Oscillated)

¹¹C Cosmogenic Background

SNO+ solar summary

SNOLAB is a deep site where the *pep* solar neutrinos could be measured *with precision*

pep solar neutrinos are *sensitive to new physics* affecting neutrino propagation in matter

first observation of the CNO solar neutrinos would be important for astrophysics

Reactor Antineutrinos

- SNO+ can confirm reactor neutrino oscillations
- an interesting test!
 - move KamLAND's spectral distortion to higher energies by going to a slightly longer baseline

Reactor Oscillations

antineutrino events: $\overline{v_e} + p \rightarrow e^+ + n$

Kamland: 850 events/10³² proton-years SNO: 180 events/10³² proton-years

Baselines: 240 and 340 km

Geo-Neutrinos

 can we detect the antineutrinos produced by natural radioactivity in the Earth?

radioactive decay of heavy elements (uranium, thorium) produces antineutrinos

 \overline{v}_{e}

assay the entire Earth by looking at its "neutrino glow"

Image by: Colin Rose, Dorling Kindersley

Earth's Heat Flow

 models of Earth's heat sources suggest that radioactivity contributes 40-100% towards Earth's total heat flow

Heat Flow

the radiogenic portion is not that well known!

geophysicists want to understand Earth's thermal history

H.N. Pollack, S.J. Hurter and J.R. Johnson, *Reviews of Geophysics* **31**(3), 267-280, 1993

Geo-Neutrino Signal

antineutrino events \overline{v}_e + p \rightarrow e⁺ + n:

- KamLAND: 33 events per year (1000 tons CH₂) / 142 events reactor
- SNO+: 44 events per year (1000 tons CH₂) / 38 events reactor

detection...July 28, 2005 in Nature

SNO+ Technical Progress

- liquid scintillator identified
 - linear alkylbenzene
 - compatible with acrylic, undiluted
 - high light yield

- pure (light attenuation length in excess of 20 m at 420 nm)
- low cost
- high flash point
- low toxicity
- smallest scattering of all scintillating solvents investigated
- density ρ = 0.86 g/cm³
- SNO+ light output (photoelectrons/MeV) will be approximately 4× that of KamLAND

SNO+ Monte Carlo

• light yield simulations

KamLAND scintillator in SNO+	629 ± 25 pe/MeV	
above no acrylic	711 ± 27 pe/MeV	
KamLAND scintillator and 50 mg/L bisMSB	826 ± 24 pe/MeV	
above no acrylic	878 ± 29 pe/MeV	SNO+ has 54% PMT
KamLAND (20% PC in dodecane, 1.52 g/L PPO)	~300 pe/MeV for 22% photocathode coverage	coverage; acrylic vessel only diminishes light ouput by ~10%

LAB Scintillator Optimization

Light Attenuation Length

Scintillator Purification

- optical
 - at BNL and at Queen's
 - improves light attenuation length, removing impurities that absorb light, especially at lower wavelengths
 - alumina column and vacuum distillation both work
- radioactivity (e.g. ²¹⁰Pb)
 - at Queen's
 - alumina: 98-99% extraction efficiency
 - distillation: >99.9% extraction efficiency, single pass

Scintillator-Acrylic Compatibility

• ASTM D543 "Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents"

Acrylic Vessel Hold-down

- "rope net" being designed to hold down 15% density difference
- alternative: machine reverse rope grooves in existing belly plates

DEAP - Dark matter Experiment with Argon and Pulse-shape-discrimination M.G.Boulay and A.Hime, Astroparticle Physics <u>25</u>, 179 (2006)

Photon detection for DEAP-1

Acrylic guide backs off PMT to reduce (α,n) neutron backgrounds, and to reduce thermal load on room-temperature PMTs.

PICASSO RESULTS

- PICASSO uses superheated droplet technique
- Based on 3 detectors (1L each) with an active mass of 7.45g, 6.62g and 5.35g
- Exposure of 1.98 kgd
- Best in spin-dependent sector
- Peak sensitivity of σ_p =1.31 pb for a WIMP with 29 GeV mass
- Phys.Lett.B624:186-194, 2005 / NIM A 555 184-204, 2005

PICASSO Phasell

- 32 x 4.5 L detectors with a total active mass of ≈ 2.6 kg.
- 10x larger droplet size and (hopefully) 10x better purification will reduce background by factor 100 (answer within weeks after deployment)
- Finished development and installation of new neutron shield, support structure, temperature control, pressure system
- Phase II DAQ, calibration devices and full set of detectors will be deployed later this year

- Exciting new experiment at SNOLAB
- Hope to show that superheated droplet technique is feasible for large scale experiment
- Expect new, improved limits from PICASSO phase II by next year