Neutrinos and Dark Matter in Nuclear Physics NDM06, 3-9 September 2006, Paris

Collective Oscillations of Supernova Neutrinos

Georg Raffelt Max-Planck-Institut fiir Physik Miinchen

Sanduleak –69 202

Supernova 1987A 23 February 1987

Stellar Collapse and Supernova Explosion

Stellar Collapse and Supernova Explosion

Stellar Collapse and Supernova Explosion

Newborn Neutron Star

Gravitational binding energy $E_b \approx 3 \times 10^{53} \text{ erg} \approx 17\% M_{SUN} c^2$

This shows up as
99% Neutrinos
1% Kinetic energy of explosion (1% of this into cosmic rays)
0.01% Photons, outshine host galaxy

Neutrino luminosity $L_v \approx 3 \times 10^{53} \text{ erg} / 3 \text{ sec}$ $\approx 3 \times 10^{19} L_{SUN}$

While it lasts, outshines the entire visible universe

Neutrino Signal of Supernova 1987A

Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

Delayed Explosion

Neutrinos to the Rescue

Exploding Models (8-10 Solar Masses) with O-Ne-Cores

Kitaura, Janka & Hillebrandt: "Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae", astro-ph/0512065

Flavor-Dependent Fluxes and Spectra

Broad characteristics

- Duration a few seconds
- $\langle E_v \rangle$ ~ 10–20 MeV
- $\langle E_{v} \rangle$ increases with time
- Hierarchy of energies
- Approximate equipartition of energy between flavors

However, in traditional simulations transport of v_{μ} and v_{τ} schematic

- Incomplete microphysics
- Crude numerics to couple neutrino transport with hydro code

Flavor-Dependent Neutrino Fluxes vs. Equation of State

Kitaura, Janka & Hillebrandt, "Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous Type II-P supernovae", astro-ph/0512065

H- and L-Resonance for MSW Oscillations

Self-Induced Flavor Oscillations of SN Neutrinos

Nonlinear Neutrino Conversion in Supernovae

Duan, Fuller, Carlson, Qian: "Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories", astro-ph/0606616. See also: astro-ph/0608050

Bipolar Oscillations of Neutrinos in a Box

Neutrino Density Matrices in Flavor Space

General Equations of Motion

when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

$$\omega_{\text{RED}} = \frac{\Delta \text{RE}}{\text{RE}} < \mu = \sqrt{\text{RE}} \text{RE}_{\mathbf{v}} \langle \textbf{I} - \textbf{RE} \theta \rangle$$

Synchronized Oscillations by Self-Interactions

Neutrinos precess in external magnetic field B (in flavor space)

The ensemble of neutrino magnetic moments creates an "internal magnetic field" that is felt by each neutrino

Internal field ≫ external B: All modes are locked to each other and spin-precess together in analogy to spin-orbit coupling in atoms, causing the anomalous Zeeman effect.

Synchronized oscillation frequency

Synchronized Oscillations by Self-Interactions

Pastor, Raffelt & Semikoz, PRD 65 (2002) 053011

Equations of Motion for Two-Flavor Case

Bipolar Oscillations of Neutrinos in a Box

Transition Between Different Oscillation Modes

Toy Supernova in "Single-Angle" Approximation

Sources of Decoherence

- Different oscillation frequencies do not lead to decoherence
- Evolution still governed by a single flavour variable with

(in complete contrast to ordinary oscillations with energy dispersion, but similar to synchronised case)

(Hannestad, Raffelt, Sigl, Wong, astro-ph/0608695)

- Different coupling strengths do not average in a non-isotropic medium, e.g. nus streaming off a SN core ("multi-angle" case as numerically studied by Duan, Fuller, Carlson & Qian, astro-ph/0606616)
- Must lead to decoherence. But how much?
- Isotropic treatment a reasonable proxy for multi-angle case? (as suggested in astro-ph/0606616) If so, why?

Nonlinear Neutrino Conversion in Supernovae

Duan, Fuller, Carlson, Qian: "Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories", astro-ph/0606616. See also: astro-ph/0608050

Different Oscillation Modes in Supernovae

Conclusions

Simultaneous v and \overline{v} flavor conversion possible by bipolar collective oscillation mode at few 10 to few 100 km above neutrino sphere

Depending on primary neutrino flux spectra, may

- Modify energy transfer to shock wave
- Modify neutrino-driven nucleosynthesis
- Modify observable signatures of SN neutrino oscillations
- In a non-isotropic medium (as for neutrino streaming off a SN core), both collective conversion and kinematical decoherence possible
- Which form is more generic in the SN context?
- Large-scale numerical simulations crucial
- Reduction to theoretically tractable "toy cases" equally important for this nonlinear system

Selected Literature on Bipolar Oscillations

Samuel, PRD 48 (1993) 1462, hep-ph/9604341 Kostelecký & Samuel, hep-ph/9506262	 Numerical discovery of collective phenomena in dense neutrino gases (synchronised and bipolar) Analytic solutions for basic cases
Pastor & Raffelt astro-ph/0207281	Strong conversion effects in SN hot bubble region numerically observed even for small Δm^2 , but connection to bipolar mode not recognised
Duan, Fuller & Qian, astro-ph/0511275	 Identify bipolar oscillation mode as crucial in SN region up to a few 100 km above nu-sphere Probably not (much) affected by ordinary matter
Duan, Fuller, Carlson & Qian, astro-ph/0606616 astro-ph/0608050	• Large-scale numerical simulations of "multi-angle effect" (including variation of nu-nu interaction for different modes in non-isotropic medium relevant for SN nus)
Hannestad, Raffelt, Sigl & Wong, astro-ph/0608695	 Identify collective motion as a "pendulum in flavor space", explains many puzzling details Bipolar conversion is the instability of an inverted harmonic oscillator Matter indeed causes unimportant log delay