Supernova Neutrino Detection

Kate Scholberg, Duke University NDM 06, Paris, September 2006

OUTLINE

Supernova neutrinos

What can we learn from supernova neutrinos?

What is needed in a SN neutrino detector?

Detector technologies, by interaction type:

- Inverse beta decay
- Other charged-current reactions
- Elastic scattering
- Neutral current reactions

Beyond the Milky Way

Summary

SUPERNOVA NEUTRINOS

When a star's core collapses, ~99% of gravitational binding energy of proto-nstar goes into v's of *all flavors*

(Energy can escape via v's)

Timescale: *prompt*after core collapse,
overall Δt~10's
of seconds

Expected flavor-energy hierarchy

$$\langle \mathsf{E}_{_{\mathcal{V}_{_{\mathbf{e}}}}} \rangle \sim$$
 12 MeV $\langle \mathsf{E}_{_{ar{\mathcal{V}}_{_{\mathbf{e}}}}} \rangle \sim$ 15 MeV $\langle \mathsf{E}_{_{ar{\mathcal{V}}_{_{\mu}}}, ar{\mathcal{V}}_{_{\tau}}}, ar{\mathcal{V}}_{_{\tau}}} \rangle \sim$ 18 MeV

Fewer interactions w/ proto-nstar

- ⇒ deeper v-sphere
- \Rightarrow hotter v's

SN1987A

Type II in LMC (~55 kpc)

Water Cherenkov: IMB

E_{th}~ 29 MeV, 6 kton

8 events

Kam II

E_{th}~ 8.5 MeV, 2.4 kton

11 events

Liquid Scintillator: Baksan

E_{th}~ 10 MeV, 130 ton

3-5 events

Time (seconds)

5 events??

Confirmed baseline model... but still many questions

What Can We Learn from a High Statistics Supernova Neutrino Signal?

CORE COLLAPSE PHYSICS

- explosion mechanism
- proto nstar cooling, quark matter
- black hole formation
- accretion disks
- nucleosynthesis

NEUTRINO/OTHER PARTICLE PHYSICS

- V_{μ} v mixing from spectra: flavor conversion in SN/Earth (' θ_{13} the lucky and patient way')
 - other ν properties: sterile ν 's, magnetic moment,...
 - axions, extra dimensions, FCNC, ...

ASTRONOMY FROM EARLY ALERT

~hours of warning before visible SN, + some v pointing

- progenitor and environment info
- unknown early effects?

SuperNova Early Warning System:

Network of existing SN sensitive detectors, alert if coincidence within 10 secs (SK, SNO, LVD, Amanda/IceCube)

Combining information with other detectors sensitive to SNae is important! (alert & later)

gravitational waves

multiwavelength astronomy

What do we want in a SN v detector?

- Need ~ 1kton for ~ few 100 interactions for burst at the Galactic center (8.5 kpc away)
- Must have bg rate << rate in ~10 sec burst (typically easy for underground detectors, even thinkable at the surface)

Also want: • Timing

- Energy resolution
- Pointing
- Flavor sensitivity

Require NC sensitivity for $\nu_{\mu,\tau}$, since SN ν energies below

CC threshold

Sensitivity to different flavors and ability to tag interactions is key! v_e vs v_e vs v_x

Good old CC inverse beta decay, the workhorse of neutrino physics, serves us well for SN neutrino detection:

In any detector with lots of free protons (e.g. water, scint) this dominates by orders of magnitude

SCINTILLATION DETECTORS

Liquid scintillator C_nH_{2n} volume surrounded by photomultipliers

- few 100 events/kton
- low threshold, good neutron tagging possible
- little pointing capability (light is isotropic)

KamLAND

(Japan)

LVD (Italy)

Mini-BooNE (USA)

Borexino (Italy)

WATER CHERENKOV DETECTORS

Volume of clear water viewed by PMTs

- few 100 events/kton
- typical energy threshold
 several MeV makes
 2.2 MeV neutron tag difficult

Super-Kamiokande III 22.5 kton f.v., newly reconstructed

Also: 1.7 kton light water in SNO

Possible enhancement:

use gadolinium to capture neutrons for tag of \overline{v}_e

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons;

$$n + Gd \rightarrow Gd^* \rightarrow Gd + \gamma \qquad \sum E_{\gamma} \sim 8 \quad MeV$$

and, more than 2.2 MeV of γ energy available

⇒ previously used in small scintillator detectors; may be possible for large water detectors with ~0.2% gadolinium trichloride solution

Beacom & Vagins PRL 93:171101, 2004

R&D is currently underway for SK

LONG STRING WATER CHERENKOV DETECTORS

~kilometer long strings of PMTs in very clear water or ice

Nominally multi-GeV energy threshold... but, may see burst of low energy $\overline{\nu}_e$'s as coincident increase in single PMT count rates (M_{eff} 0.4 kton/PMT)

cannot tag flavor, or other interaction info, but gives overall rate check

AMANDA/IceCube at the South Pole

So far we have seen: for most existing (and planned) large detectors, inverse beta decay dominates, (and is potentially taggable) so primary sensitivity is to \overline{v}

CC interactions on nuclei play a role, too

(cross-sections smaller for bound nucleons)

$$v_e^{} + n \rightarrow p + e^-: v_e^{} + (N,Z) \rightarrow (N-1, Z+1) + e^-$$

$$\stackrel{-}{\nu_e}$$
 + p \rightarrow n + e⁺: $\stackrel{-}{\nu_e}$ + (N, Z) \rightarrow (N+1, Z-1) + e⁺

Charged lepton e^{+/-}
 possibly ejected nucleons
 possibly de-excitation γ's

depends nucleus

Nuclear physics important in understanding cross-sections and observables!

... often large uncertainties, need to measure!

Examples of CC interactions of SN v with nuclei:

CC breakup in heavy water $v_{\lambda} + d \rightarrow p + p + e^{-}$ e.g. SNO, ~100 ev @ 8.5 kpc

$$v_e + d \rightarrow p + p + e^ \overline{v}_e + d \rightarrow n + n + e^+$$

Interactions with oxygen in water

e.g. Super-K, ~few tens @ 8.5 kpc

$$\frac{v_{e} + {}^{16,18}O \rightarrow {}^{16,18}F + e^{-}}{v_{e} + {}^{16}O \rightarrow {}^{16}N + e^{+}}$$

Interactions with carbon in scintillator

e.g. LVD, KamLAND

$$\frac{v_{e} + {}^{12}C \rightarrow {}^{12}N + e^{-}}{v_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}}$$

More examples of CC v-nucleus interactions

'High Z' Detectors

Large quantity of Pb (ClO₄)₂, Fe + scintillator, n counters

$$\overline{v}_e^- + (A,Z) \rightarrow (A-1,Z-1) + n + e^+$$
 $v_e^- + (A,Z) \rightarrow (A-1,Z+1) + n + e^-$

OMNIS, ADONIS, HALO

Liquid Argon

$$v_{a} + {}^{40}Ar \rightarrow e^{-} + {}^{40}K^{*}$$

Icarus, LANNDD

Radiochemical

Chlorine
$$V_e + {}^{37}CI \rightarrow e^- + {}^{37}Ar$$

Gallium $V_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge$

lodine $V_e + {}^{127}I \rightarrow e^- + {}^{127}Xe$

(quasi)
real-time
with atom
tagging?

Also: elastic scattering (CC and NC contributions)

$$v_{e,x} + e^{-} \rightarrow v_{e,x} + e^{-}$$

In water Cherenkov and scintillator, few % of inverse βdk rate

POINTING from Cherenkov cone: $\delta \theta \sim \frac{25^{\circ}}{\sqrt{N}}$ (slightly degraded by isotropic bg)

$$\delta \theta \sim \frac{25^o}{\sqrt{N}}$$

Super-K: expect ~200 ES for 8.5 kpc SN (5-10 from breakout) ⇒ ~ 4° pointing

(probably best bet for pointing)

We have sensitivity to electron flavor neutrinos via CC interactions... but ~2/3 of the luminosity is μ and τ flavor; can be detected via NC interactions only

Typically, signature is nucleon emission or nuclear de-excitation products

e.g.
$$v_x + (A,Z) \rightarrow (A-1,Z) + n + v_x$$

$$v_x + (A,Z) \rightarrow (A,Z)^* + v_x \qquad \text{sometimes good tag}$$

$$v_x + (A,Z) \rightarrow (A,Z) + \gamma \qquad \text{is possible}$$

Again, nuclear physics matters!

Examples of NC interactions in existing detectors

NC breakup in heavy water

$$v + d \rightarrow v + p + n$$

~100 ev @ 8.5 kpc

Interactions with oxygen in water

e.g. Super-K,
$$v_x + {}^{16}O \rightarrow v_x + {}^{16}O^*$$
 ~few hundreds

Interactions with carbon in scintillator

$$v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*$$

$$\downarrow^{12}C + \gamma$$

~few tens @ 8.5 kpc

'High Z' Detectors: *dedicated* for supernova v's

Pb (as metal and/or perchlorate) (and/or Fe) + scint, neutron detectors

$$v_e + {}^{208}\text{Pb} \rightarrow {}^{208}\text{Bi*} + e^{-}$$

1n, 2n emission

$$v_x + {}^{208}\text{Pb} \rightarrow {}^{208}\text{Pb}^* + v_x \quad \text{NC}$$
1n, γ emission

HALO at SNOLab

from T. Massicotte thesis

SNO ³He counters + Pb

Relative rates depend on v energy ⇒good flavor oscillation sensitivity

OMNIS/ADONIS

Neutrino-proton elastic scattering

$$v_x + p \rightarrow v_x + p$$

J. Beacom et al., PRD66:033001, 2002

Recoil energy small, but visible in scintillator (accounting for 'quenching')

Expect ~few 100 events for 8.5 kpc SN

Neutrino-nucleus NC elastic scattering in ultra-low energy detectors

$$v_x + A \rightarrow v_x + A$$

C. Horowitz et al., PRD68:023005, 2003

High x-scn but *very* low recoil energy (10's of keV) ⇒ possibly observable in solar pp/DM detectors

~few events per ton for Galactic SN

ν_x energy information from recoil spectrum

e.g. Ar, Ne, Xe, Ge, ...

Summary of SN neutrino detection

Inverse beta decay: $\bar{v}_{p} + p \rightarrow e^{\dagger} + n$

- dominates for detectors with lots of free p (water, scint)
- ν_e sensitivity; good E resolution; well known x-scn; some tagging, poor pointing

CC interactions with nuclei:

- lower rates, but still useful, v_{a} tagging useful (e.g. LAr)
- cross-sections not always well known

Elastic scattering: few % of invβdk, but point!

NC interactions with nuclei:

- very important for physics, probes μ and τ flux
- some rate in existing detectors, dedicated observatories
- some tagging; poor E resolution; x-scns not well known
- NEW coherent ν-p, ν-A scattering in low thresh detectors

\begin{aside}

Many CC and NC v-nucleus cross-sections are poorly known...we need to *measure* them!

A high-intensity stopped-pion neutrino source is ideal: spectrum matches SN's

What's next?

Unfortunately, expect only a few core collapse SN per century in our Galaxy... could be a long wait

Beyond the Milky Way edge (20 kpc) next nearest concentration of stars is Andromeda (M31), 770 kpc away

1/D² hurts! Expect only 7000 (8.5/770)² ~ 1 event in SK for a core collapse in Andromeda

Next mega-detectors: how well can one do?

~few to tens of events from M31

Optimize location?
Mirizzi et al. astro-ph/0604300

Looking beyond: number of sources ∞ D³

S. Ando et al., PRL 95:171101, 2005:

With Mton scale detector, probability of detecting 1-2 events reasonably close to ~1 at distances where rate is <~1/year

Tagging signal over background becomes the issue ⇒ require double v's or grav wave/optical coincidence

And going even farther out: we are awash in a sea of 'relic' or diffuse SN v's (DSNB),

from ancient SNae

Learn about star formation rate, which can constrain cosmological models

Difficulty is tagging for decent signal/bg (no burst, 2 v coincidences optical SNae...)

$$\bar{v}_{e} + p \rightarrow e^{\dagger} + n$$

scint or water+Gd are good bets

Using DSNB to test SN/ neutrino/ exotic physics?

DSNB

Galactic SN

~300 events/kt/30 year

~0.1 event/kt/year

~10 events/kt/yr

more background

less background

low rate of return, but a sure thing

risky in the short term, but you win in the very long term

bonds vs stocks...

(Of course if you build a big detector and run it a long time, you may get both! Diversify!)

Summary of supernova neutrino detectors

	y					1110 00
	Detector	Туре	Mass (kton)	Location	Events at 8.5 kpc	Status
	Super-K	Water	32	Japan	7000	Running as SK III
	SNO	Heavy	1(D ₂ O)	Canada	400	Running until
		water	1.4(H ₂ O)		450	end of 2006
	LVD	Scintillator	1	Italy	200	Running
	KamLAND	Scintillator	1	Japan	300	Running
	Botexino	Scintillator	0.3	Italy	100	200x
	Baksan	Scintillator	0.33	Russia	50	Running
	Mini-BooNE	Scintillator	0.7	USA	200	Running
	AMANDA/	Long string	0.4/PMT	Antaretica	N/A	Running
,	IceCube					
	Icarus	LAc	2.4	Italy	200	200x
	CLEAN	Ne, Ar	0.01	Canada, USA?	30	proposed
	HALO	Pb	0.1	Canada	40	proposed
	SNO+	Scintillator	1	Canada	300	proposed
	MOON	¹⁰⁰ Mo	0.03	?	20	proposed
	NOvA	Scintillator	20	USA	4000	proposed
	OMNIS	Pb	2-3	USA?	>1000	proposed
	LANNDD	LAr	70	USA?	6000	proposed
	MEMPHYS	Water	440	Ецгоре	>100,000	proposed
	UNO	Water	500	USA	>100,000	proposed
	Нурег-К	Water	500	Japan	>100,000	proposed
	LENA	Scintillator	60	Ецгоре	18,000	proposed
	HSD	Scintillator	100	USA	30,000	proposed

Conclusion

Next generation of detectors can snare v's from:

Let's cast our nets for a neutrino catch that's both abundant and rich!

