Present ββ experiments

≻ NEMO-3

CUORICINO

Xavier Sarazin – LAL

NDM 06 - 05-09 September 2006 - Paris - France

NEMO3 status

The NEMO3 detector

(France, Finlande, Japon, Maroc, République tchèque, R-U, Russie, Ukraine, USA.)

(a) Freius Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

99.5 % cells ON Vertex resolutions : $\sigma_{\perp} (\Delta \text{Vertex}) = 0.6 \text{ cm}$ $\sigma_{\prime\prime} (\Delta \text{Vertex}) = 1.3 \text{ cm}$

n n (Z=0)

<u>Calorimeter</u>:

97% PM+scintillators ON

TDC resolution : 250 ps @ 1MeV

FWHM (1 MeV) 14% (PM 5") 17% (PM 3")

Magnetic field: 25 Gauss Gamma shield: Iron (18 cm) Neutron shield: borated water + wood

 \Rightarrow Identification e⁻, e⁺, γ and α

NEMO3 detector with the radon-free air tent (dec 2004)

ββ decay isotopes in NEMO3 detector

¹⁰⁰Mo purified at INL (USA) and ITEP (Russia)

$\beta\beta$ events selection in NEMO3

Typical $\beta\beta 2\nu$ event observed from ¹⁰⁰Mo

¹⁰⁰Mo $\beta\beta(2\nu)$ Results

Phase 1 Feb. 2003 - Dec. 2004 WITH RADON

Phys. Rev. Lett. 95 182302 (2005)

 $\ll\beta\beta$ factory» \rightarrow tool for precision test

Other Nuclei $\beta\beta(2\nu)$ Results

Background subtracted

$\beta\beta(0v)$ research: measurement of backgrounds

NEMO3 is able to measure each componant of its background by different analysis channels

External BKG: ²⁰⁸Tl (PMTs) channel external (e^- , γ) ~ 10⁻³ evts y⁻¹ kg ⁻¹ 2.8<E₁+ E₂<3.2 MeV

External BKG: neutrons and $\gamma > 3$ MeV channel crossing e⁻ or (e⁻,e⁺)_{int} with E₁+E₂ > 4 MeV ~ **3.** 10⁻³ evts y⁻¹ kg⁻¹ 2.8<E₁+ E₂<3.2 MeV

²⁰⁸Tl in the ββ foils : $80 \pm 20 \mu Bq/kg$ Channels (e⁻,2γ), (e⁻,3γ) coming from the foil ~ 0.1 evts y⁻¹ kg ⁻¹ 2.8<E₁+ E₂<3.2 MeV

²¹⁴Bi in NEMO3 ~ 0.1 evts y⁻¹ kg ⁻¹ 2.8<E₁+ E₂<3.2 MeV Background radon level suppressed by a factor 10 in Dec. 2004 with the radon-free air purification system

¹⁰⁰Mo $\beta\beta2\nu$ T_{1/2} = 7.11 10¹⁸ y ~ 0.3 evts y⁻¹ kg⁻¹ 2.8<E₁+E₂<3.2 MeV

Two phases of runs in NEMO-3

Phase I: Radon contamination

February 2003 - September 2004 394 days of data taking ββ0ν publication: Phys. Rev. Lett. 95, 182302 (2005)

Phase II: Low level of radon

December 2004 - today 290 days of data taking have been preliminary analysed

CUORICINO STATUS

CUORICINO Bolometer

TeO₂ Bolometer: Source = Detector

Heat sink: Cu structure (8 mK) Thermal coupling: Teflon (G = 4 pW/mK) Thermometer: NTD Ge-thermistor (dR/dT \approx 100 kΩ/µK) Absorber: TeO₂ crystal (C \approx 2 nJ/K \approx 1 MeV / 0.1 mK)

For E = 1 MeV: $\Delta T = E/C = 0.1 \text{ mK}$ Signal size: 1 mV Time constant: $\tau = C/G = 0.5 \text{ s}$ Energy resolution (EWHI

Energy resolution (FWHM): ~ 5-10 keV at 2.5 MeV

CUORICINO DETECTOR

Gran Sasso Underground Laboratory (Italy), 3500 m.w.e.

Survey of the gain stability

voltage pulse injection

Si – resistor: produce a particle like signal through Joule power dissipation

• Calibrated voltage pulse injected every 300 sec. on Si-resistor to correct gain instabilities of the detector

• Joule dissipation on the resistor produces an energy pulse in the crystal read like a signal

Amplitude vs. Time – monochromatic line before "stabilization"

CUORICINO RUNNING

Run I: 22 Apr. 2003 \rightarrow 27 Oct. 2003 29 crystals 5x5x5 11 crystal 3x3x6 2 crystals ¹³⁰Te 3x3x6 Total ¹³⁰Te MASS = 59 moles $\Delta E/E$ @ 2.6 MeV FWHM = 9.2 keV (bkg spect.)

Run II: 7 May 2004 \rightarrow Today 40 crystals 5x5x5 13 crystal 3x3x6 2 crystals ¹³⁰Te 3x3x6 Total ¹³⁰Te MASS = 83 moles $\Delta E/E$ @ 2.6 MeV FWHM = 6.3 keV (bkg spect.)

> Total exposure (10 may 2006): 8.38 kg.year of ¹³⁰Te

CURICINO RESULTS

Total Exposure: 8.38 kg-y of ¹³⁰Te BKG: 0.18 ± 0.01 cnts/(keV-kg-y) FWHM at 2615 keV: ~ 8 keV

ANALYSIS OF BACKGROUND in $\beta\beta0v$ region

In the COINCIDENCE spectrum ONLY CRYSTAL SURFACE contam. contribute

In the ANTI-COINCIDENCE bkg spectrum

- Crystal bulk contaminations determine gaussian peaks at the Q-value of the decay
- > Surface contaminations determine peaks at the α energy, with tails
- (shape depending on contamination depth)

ANALYSIS OF BACKGROUND in $\beta\beta0v$ region

Model of background								
Source	²⁰⁸ Tl	$\beta\beta(0\nu)$ region	3-4 MeV region					
TeO ₂ ²³⁸ U and ²³² Th surface contamination	-	$20 \pm 15\%$	$20 \pm 10\%$					
Cu ²³⁸ U and ²³² Th surface contamination	$\sim \! 15\%$	$50\pm20\%$	$80\pm10\%$					
²³² Th contamination of cryostat Cu shields	$\sim\!85\%$	$30\pm10\%$	-					
Th containination of cryostat Cu shields	~03%	30± 10%	-					

Important part of background due to ²³⁸U or ²³²Th contamination on the surface of crystal and Cu structure facing the detectors

surface contamination level: ~ 1 ng/g vs bulk c.l. : < 1 (0.1) pg/g for Cu (TeO₂) contamination depth: ~ 5 μ m in agreement with direct measurement on Cu

Experiment	nuclei	Mass	$T_{1/2}$ (ββ0ν)	$\langle m_{v} \rangle$ (eV)		
		(kg)		QRPA	QRPA	Shell Model
				[1-3]	[4]	(Caurier)
HM-IGEX	⁷⁶ Ge	6-10	> 1.9 10 ²⁵	0.3 – 0.9	0.5 - 0.6	1.0
CUORICINO	¹³⁰ Te	11.6	> 2.4 10 ²⁴	0.4 - 0.8	0.9 – 1.1	0.6
end 2009 ^(*)			> 6 10 ²⁴	0.25 - 0.5	0.6 – 0. 7	0.4
NEMO-3	¹⁰⁰ Mo	6.91	> 5.8 10 ²³	0.6 – 0.9	2.1 - 2.7	
end 2009 (**)			> 2 10 ²⁴	0.3 - 0.45	1.1 – 1.4	
NEMO-3	⁸² Se	0.93	> 2. 10 ²³	1.2 - 2.5	2.6 - 3.2	3.5
end 2009 (**)			> 8 10 ²³	0.6 – 1.2	1.3 – 1.6	1.7
NEMO-3	¹⁵⁰ Nd	0.037	> 1.7 10 ²²		3.7 – 4.2	
end 2009 ^(**)			> 5 10 ²²		2.1 – 2.4	

(*) CUORICINO: with 60% live time (**) NEMO-3: with 80% live time

- [1] Simkovic et al, Phys. Rev. 60 (1999) 055502
- [2] Stoica et al, Nucl. Phys. A 694 (2001) 269
- [3] Suhonen et al., Nucl. Phys. A 729 (2003) 867
- [4] Rodin et al., Nucl. Phys. A 766 (2006) 107

CONCLUSIONS

Two $\beta\beta0\nu$ experiments are running today: NEMO-3 and CUORICINO With large mass ~10 kg of $\beta\beta$ isotopes and low background

Two complementary techniques:

CUORICINO: largest Cryogenic bolometer in the world real technical performance in the last 20 years compact detector Bkg ~1.5 counts/kg/y/FWHM

NEMO-3: tracko-calo detector allows a direct 2 e⁻ detection reject any unknown gamma line $Bk > 2.8 \text{ MeV} \sim 0.5 \text{ counts/kg/y with } {}^{100}\text{Mo} (T_{1/2}=7 \ 10^{18} \text{ y}) \sim 0.1 \text{ counts/kg/y with } {}^{82}\text{Se} (T_{1/2}=10^{20} \text{ y})$

Both techniques NEMO-3 and CUORICINO are as mature as HPGe detectors \Rightarrow can be extrapolated to larger mass