

Double Beta Decay: future experiments

Andrea Giuliani

University of Insubria, Como, and INFN Milano

- crucial role of DBD for the future of neutrino physics
- from where we start...and where we want to go to
- the DBD experimental program: challenges and techniques
- overview of the experiments
- discovery potential and branching points

0v-DBD and neutrino physics

how **0v-DBD** is connected to neutrino mixing matrix and masses in case of process induced by mass mechanism

From where we start...

...and where we want to go

The size of the challenge

Experimental sensitivity to 0v-DBD

sensitivity F: lifetime corresponding to the minimum detectable number of events over background at a given confidence level

Choice of the nuclide

Experiments and techniques

Source = Detector Easy to approach the ton scale

CANDLES – ⁴⁸Ca

Array of natural pure (not Eu doped Prove of principle completed (CAND Next step (CANDLES III:-under cons Further step (CANDLES IV: requires Final goal (CANDLES V): 100 ton (S Proved energy resolution: 3.4 % FW The good point of this search is the I

⇒out of γ (2.6 MeV end point), β (3.3 MeV end point) and α (max 2.5 MeV with quench) natural radioactivity Other background cuts come from PSD (α / β different timing) and space-time correlation for Bi-Po and Bi-TI

Source ≠ Detector

Easy to get tracking capability

Low energy resolution (>2%) Tracking / topology capability Easy to approach zero backround (with the exception of 2v DBD component)

Experiments and techniques

Experiments and techniques

SUPERNEMO - 82Se or 150Nd Modules with source foils, tracking (drift Magnetic field for charge sign Possible configuration: 20 modules with Energy resolution: 4 % FWHM li can take advantage of NEMO3 experi-MOON - ¹⁰⁰Mo or ⁸²Se or ¹⁵⁰Nd Multilayer plastic scintillators interleaved MOON-1-prototype without tracking sec MOON-2 prototype foreseen for 2006-2 Proved energy resolution: 6.8 % FWHN Final target: collect 5 y x ton DCBA - ⁸²Se or ¹⁵⁰Nd Momentum analyzer for beta particles Prototype under construction: Nd₂O₂ fc Space resolution ~ 0.5 mm; energy res Final target: 10 modules with 84 m² so 0 source detector Source \neq Detector Easy to get tracking capability

GERDA sensitivity

- Phase I: operate refurbished HM & IGEX enriched detectors (~20 kg) Background: 0.01 counts/ keV kg y Scrutinize ⁷⁶Ge claim with the same nuclide (exclude 99% c.l. or confirm 5σ) Half life sensitivity: 3 x 10²⁵ y
- Phase II: additional ~20 kg ⁷⁶Ge diodes (segmented detectors)

Background: 0.001 counts / keV kg y Sensitivity after 100 kg y (~3 years): 2 x 10²⁶ y

 $\langle M \rangle$ < 90 - 290 meV

Phase III (depending on physics results of Phase I/II)

 \Rightarrow ~ 1 ton experiment in world wide collaboration with MAJORANA

 $\langle M \rangle < 20 - 50 \text{ meV}$

EXO 200 sensitivity

Assumptions on detector performance and background:

- 200 kg of Xe enriched to 80% in 136
- $\sigma(E)/E = 1.4\%$ obtained in EXO R&D

Low but finite radioactive background: 20 events/year in the ±2σ interval centered around the 2.481 MeV endpoint

Negligible background from 2v DBD (T_{1/2}>1·10²²yr R.Bernabei et al. measurement)

If ⁷⁶Ge claim is correct :

- Worst case (QRPA, upper limit) 15 events (40 events bkg) $\Rightarrow 2\sigma$
- Best case (NSM, lower limit) 162 events (40 events bkg) \Rightarrow 11 σ

CUORE sensitivity

Montecarlo simulations of the background show that

b = 0.001 counts / (keV kg y)

is possible with the present bulk contamination of detector materials

The problem is the surface background (alpha, beta energy-degraded)

it must be reduced by a factor 10 – 100 with respect to Cuoricino work in progress! (only a factor 2 from the conservative assumption)

5 y sensitivity (1σ) with conservative
assumption: b = 0.01 counts/(keV kg y)5 y sensitivity (1σ) with aggressive
assumption: b = 0.001 counts/(keV kg y) $F^{0\nu} = 9.2 \times 10^{25} \times (T [y])^{1/2}$ $F^{0\nu} = 2.9 \times 10^{26} \times (T [y])^{1/2}$ $\langle M \rangle < 20 - 100 \text{ meV}$ $\langle M \rangle < 11 - 60 \text{ meV}$ $\langle M \rangle < 7 - 38 \text{ meV}$

enriched CUORE

Prediction of the Moore's law for the sensitivity

