The Photo Injector Test Facility at DESY in Zeuthen

Anne Oppelt for the PITZ collaboration

4.4.2006
Overview

- Motivation: VUV-FEL and XFEL → photo injector R&D for DESY’s FELs
- The photo injector at Zeuthen → a brief history of PITZ
- The PITZ1 research program → presentation of the PITZ1 results
- Facility upgrade: towards PITZ2 → current status and future plans
- Summary
- **TTF1** has reached SASE in 2000

- **VUV-FEL** is running as user facility since August 2005
FELs at DESY

- performance of the planned XFEL (>2012) depends strongly on the electron beam quality of the injector
- beam quality can only deteriorate in the accelerator
- electron source must provide very small emittance beam
- photo injector development is urgent
The PITZ project

→ construction of a Photo Injector Test facility in Zeuthen with the goals:

- develop an electron source for the XFEL:
 → very small transverse emittance (≤ 1 mm mrad @ 1 nC)
 → stable production of short bunches with small energy spread
- extensive R&D on photo injectors independent of serving concrete FEL / user requests
- compare detailed experimental results with simulations:
 → benchmark theoretical understanding of photo injectors
- prepare rf guns for subsequent operation at VUV-FEL / XFEL
- test new developments (laser, cathodes, beam diagnostics)
- long term plans: e.g. flat beams, polarized electrons for ILC
The PITZ project

Construction of the photo injector test facility (summer 2000)
The PITZ project

Commissioning of the photo injector (2001)
The PITZ project

First photoelectrons (January 2002)
The PITZ electron gun

- normal conducting 1.5 cell copper cavity
- frequency: 1.3 GHz (π-mode)
- coaxial RF input coupler
- 3 similar prototypes exist
4.4.2006, LAL Orsay

A.Oppelt: PITZ

The PITZ1 setup

- PITZ1 phase (2001–2004) included the full characterization of the installed gun cavity
- full parameter optimization for emittance minimization has been done
- very good emittances have been obtained ($\varepsilon \sim 1.6 \text{ mm mrad}$)
• VUV-FEL startup request clearly fulfilled in 2003
 → gun is transferred to Hamburg and installed in the VUV-FEL
• PITZ continues with a replacement gun
PITZ-gun \rightarrow VUV-FEL

Nov. 2003
PITZ1 research program

- Conditioning of the Gun cavity and dark current studies
- The laser system / measurement of laser parameters
- Characterization of the electron beam
 - charge
 - momentum and momentum spread
 - bunch length
 - beam size and transverse emittance
 - thermal emittance
4.4.2006, LAL Orsay A.Oppelt: PITZ

PITZ1 results
- Gun conditioning -

1st Problem: max. acceleration gradient only reachable when full RF power in the cavity

→ condition Gun for all possible RF settings (power level, pulse length, repetition rate) and solenoid magnet currents
→ mainly improve cavity surface
→ field emission (multipacting, sparks) may cause damage of cavity, cathode, coupler, RF window
→ vacuum survey during the conditioning process (interlocks)

2nd Problem: dark current is emitted (mainly from cathode) during the full RF pulse duration

→ large amount at high power levels / long pulses
→ may destroy cathode and diagnostics (e.g. screens)
→ can be transported until the undulator and damage it
We experienced damages on screens and cathodes.
PITZ1 results - Gun conditioning -

<table>
<thead>
<tr>
<th></th>
<th>10 Hz</th>
<th>5 Hz</th>
<th>10 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>repetition rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rf pulse length</td>
<td>0.5 ms</td>
<td>1.3 ms</td>
<td>1.0 ms</td>
</tr>
<tr>
<td>peak power at gun</td>
<td>4 MW</td>
<td>4 MW</td>
<td>3 MW</td>
</tr>
<tr>
<td>average power</td>
<td>20 kW</td>
<td>26 kW</td>
<td>30 kW</td>
</tr>
<tr>
<td>duty cycle</td>
<td>0.5 %</td>
<td>0.65 %</td>
<td>1.0 %</td>
</tr>
</tbody>
</table>

Limited by 5 MW klystron and water cooling system

Necessary upgrades:
- 10 MW klystron
- New cooling system

Requirements of VUV-FEL fulfilled

Goal parameters for the XFEL (60 MV/m):
~ 7 MW, ≤ 0.65 ms, 10 Hz
Dark current measurements in dependence on
- accelerating gradient at the cathode
- cathode material (Mo / Cs$_2$Te)
- solenoid current
and its time development
PITZ1 results
- Dark current studies -

Possible dark current sources:
- Cs_2Te film
- edge of Cs_2Te film
- Mo plug
- edge of Mo plug
→ field emission model for the cathode

Discrepancy between simulation and measurement
→ additional emission mechanisms could contribute
PITZ1 results
- Dark current studies -

Screen1 (z = 0.87m)

Screen3 (z = 2.63m)

4.4.2006, LAL Orsay

A. Oppelt: PITZ
The PITZ laser system

using sc linac technology for VUV-FEL / XFEL → long pulse trains

Pulse trains

Micro pulses

0.1-1s

≤ 800µs

0.11-1µs

20ps

10 Hz, 800μs, 1 MHz

amplified output train

pulse train from the oscillator
The PITZ laser system

4.4.2006, LAL Orsay

A. Oppelt: PITZ
Longitudinal laser pulse shape can be changed between **gaussian** and **flat-top**

- **gaussian**
 - e.g. before 23.6.03
 - FWHM = 7 ± 1 ps

- **flat-top**
 - e.g. after 23.6.03
 - FWHM $\approx 19-23$ ps
 - rise / fall time 5-7 ps

Minimum measured emittance:

- ≥ 3 mm mrad
- 1.6 mm mrad
Transverse laser profile
(pictures from the ‘virtual cathode’)

\[\sigma_x = (0.57 \pm 0.02) \text{ mm} \]
\[\sigma_y = (0.58 \pm 0.02) \text{ mm} \]
PITZ1 results

- Bunch charge -

- charge measurement with FC or ICT
- measured charge depends on
 - position of measurement device
 - phase of the RF field
 - solenoid current

Nominal charge: 1 nC
PITZ1 results
- Beam size measurements -

• measured with YAG screen
• study dependence on
 - screen position
 - RF phase
 - solenoid current

Application:
Determinative of the reference phase
(phase of maximum energy gain)
→ measure the electron beam size
 as function of the launch phase
Principle of momentum measurement

The Lorentz-Force: Motion of electrons with velocity \vec{v} and momentum p in magnetic field \vec{B}

$$\vec{F}_L = e(\vec{E} + \vec{v} \times \vec{B})$$

Magnetic Rigidity:

$$\vec{F}_L = evB = \frac{mv^2}{\rho}$$

ρ: Radius of curvature of the path

$$B\rho = \frac{mv}{e} = \frac{p}{e}$$
PITZ1 results
- Momentum and momentum spread -

Measurement as function of the RF phase:

- max. mean momentum: 5.20 MeV/c
- min. rms momentum spread: 16 keV/c
- phase difference between $p_{\text{mean}}^{\text{max}}$ and $p_{\text{RMS}}^{\text{min}}$ only \sim5 degrees

Q = 1 nC
PITZ1 results
- Bunch length measurements -

Principle:
- electron bunch hits radiator (aerogel / quartz) and radiates photons
- analysis of time development with streak camera

Minimum length (FWHM):
(21.04 ± 0.45stat ± 4.14syst) ps
(6.31 ± 0.14stat ± 1.24syst) mm
PITZ1 results
- Emittance measurements -

transverse normalized emittance
\[\varepsilon_n^2 = \langle x^2 \rangle \langle x'^2 \rangle - \langle x \ x' \rangle^2 \]
~ beam size \cdot angular divergence

phase space reconstruction = approximation of real phase space
Problems with multi-slit measurements:
- overlapping beamlets (large divergence)
- only few beamlets (small beam size)
→ not used at PITZ
The size of the beamlet is measured for three slit positions:

\[
y_n = \langle Y \rangle + n \cdot 0.7 \sigma_y
\]

\[n \in \{-1, 0, 1\}\]
Simulated emittance for optimum parameters

Charge: 1 nC
Max. gradient: 42 MV/m
Longitudinal laser profile:
- flat top
- 20 ps FWHM
- 5 ps rise/fall time
Transverse laser profile:
- homogeneous
- $\sigma_{x,y} = 0.6$ mm
PITZ1 results
- Measured emittance -

e.g. measured transverse emittance as function of the current in the compensating magnet

\[I_{\text{buck}}, \text{A} \]

\[Q = 1 \text{ nC} \]
\[\Phi = \Phi_0 - 5^\circ \]
\[I_{\text{main}} = 305\text{A} \]
PITZ1 results
- Thermal emittance -

\[\varepsilon_{th} = \frac{\sigma}{\sqrt{\frac{2E_k}{3m_0c^2}}} \]

- average kinetic energy of the emitted photo electrons
- laser spot size

• thermal emittance adds in quadrature to the other emittance contributions:

\[\varepsilon_n \approx \left(\varepsilon_{th}^2 + \varepsilon_{rf}^2 + \varepsilon_{sc}^2 \right)^{1/2} \]

→ thermal emittance sets the lower emittance limit of an electron source

• define operation conditions such that \(\varepsilon_{rf} \ll \varepsilon_{th} \) and \(\varepsilon_{sc} \ll \varepsilon_{th} \):
Q~2-3 pC, \(\sigma_t = 3 \) ps, \(E_0 < 34 \) MV/m, laser spot size: 0.48 - 0.55 mm

4.4.2006, LAL Orsay
A.Oppelt: PITZ
PITZ1 results
- Thermal emittance -

Kinetic energy of the emitted electrons:

Cathode #60:
(QE ~ 1%)
\[E_k = (1.1 \pm 0.2) \text{ eV} \]

Cathode #61:
(QE ~ 1.5%)
\[E_k = (0.9 \pm 0.2) \text{ eV} \]

- thermal emittance is individual for each photocathode
- depends on gun operation history and cathode surface chemistry: \(\varepsilon_{th} = \varepsilon_{th}(t) \)
- more cathode studies are needed (INFN-LASA)
PITZ1 results
- Thermal emittance -

Impact of the electric rf field

Assuming emittance growth due to Schottky effect:

\[\epsilon_{th} = \sqrt{A + B \sqrt{E_{field}}} \]

Cathode #43:
(Nov.2004, QE ~ 3%)

\[\epsilon_{#43} = \sqrt{0.08 + 0.11\sqrt{E}} \]

Cathode #61:
(Apr.2004, QE ~ 1%)

\[\epsilon_{#61} = \sqrt{0.01 + 0.05\sqrt{E}} \]

Extrapolation for the XFEL case:
(emittance budget: 0.9 mm mrad)

\[\epsilon = \frac{\sigma_x}{\sigma_y} \sqrt{A + B \sqrt{E_{field}}} \approx 0.7 \text{ mm mrad} \]
The PITZ1 setup

Tunnel view at the end of the PITZ1 phase (November 2004)
- small emittance beams have been produced at PITZ1
- but: emittance growth due to space charge
- install booster cavity to further accelerate the beam
- apply emittance conservation principle to conserve small emittance
PITZ2 research program

PITZ2 – a large extension of the facility and its research program

- **study the emittance conservation principle:** install booster and new diagnostics beamline
- **benchmark theoretical understanding of photoinjectors:** improved simulation tools, detailed comparison simulation vs. measurement
- **reach XFEL requirements (0.9 mm mrad @ 1 nC):** increase RF field at the cathode, improve laser system and photocathodes
- **study XFEL parameter space:** low charge, short bunches, higher repetition rates
- **test new developments:** RF system, gun cavities, diagnostics, cathodes, laser
Collaboration partners

- **BESSY Berlin**: ICTs, magnets, PS, vacuum expert
- **CCLRC Daresbury**: phase space tomography module
- **DESY Hamburg**: new cavities (Gun3, Gun4, CDS booster)
- **INRNE Sofia**: emittance measurement system (EMSY)
- **INR Troitsk**: CDS booster cavity
- **LAL Orsay**: high energy spectrometers
- **LASA Milano**: cathode system
- **LNF Frascati**: RF deflecting cavity
- **MBI Berlin**: laser system
- **TU Darmstadt**: beam dynamics simulations
- **Uni Hamburg**: bunch length measurement
- **YERPHI Yerevan**: accelerator controls

Funding through DESY (BMBF), HGF, EC (IA-SFS, EUROFEL)
Solenoid strength, drift length, and accelerating gradient are defined with the „invariant envelope“ technique:

→ place entrance of booster at local emittance maximum and beam size minimum

→ define accelerating gradient by:

\[\gamma'_{\text{boost}} = \frac{2}{\sigma_w} \sqrt{\frac{\hat{I}}{3I_0\gamma}} \]

\(\gamma'_{\text{boost}} \) = energy gain booster

\(\sigma_w \) = rms beam size

\(\hat{I} \) = peak current

\(\gamma \) = mean beam energy

\(I_0 \) = Alvfen current

(17 kA for electrons)
The PITZ2 project
- Simulation of emittance conservation -

Simulation parameters:
40MV/m
20ps FWHM
2ps rise/fall time

matching condition (M. Ferrario)

booster
diagnostics section

→ check that the principle works and optimize it!

4.4.2006, LAL Orsay
A.Oppelt: PITZ
Towards PITZ2
- The booster cavities -

- use a n.c. TESLA prototype cavity as preliminary booster
- the final booster cavity specially designed for PITZ is in production and will be available in 2007

INR Troitsk

4.4.2006, LAL Orsay
The PITZ2 project
- The facility upgrade -

For the realization of PITZ2
- upgrade power and cooling systems
- take into operation a 2nd RF system for the booster
- install booster, beam dump, new diagnostics

→ start with a minimum version of PITZ2
Towards PITZ2
- The PITZ1.5 setup-

after the gun: 4.6 MeV
after the booster: 13.4 MeV

$p_{\text{mean}} = 13.4493$
$p_{\text{rms}} = 0.05107$

$p_{\text{mean}} = 4.6175$
$p_{\text{rms}} = 0.04775$
Towards PITZ2
- The PITZ1.5 setup -

View of the extended PITZ facility (Summer 2005)
Towards PITZ2
- First results from PITZ1.5 -

- commissioning of new diagnostics
- studies of energy gain in gun and booster
- comparison of emittance measurements with EMSY (PITZ) and e-meter (LNF)

Graph showing emittance measurements and simulations.
Towards PITZ2
- The 10 MW MBK klystron -

- 10 MW klystron necessary to reach gradients above 42 MV/m in the gun
- use multi beam klystron from Thales
- RF output via two 5 MW arms → power combiner needed
Towards PITZ2
- High power tests of a gun cavity-

- Gun1 with 10 MW klystron tested up to ~57 MV/m in 2005
- Goal for XFEL: reach 60 MV/m → continue tests in 2006

Problem:
thermal load of the gun → new gun with improved cooling

max. mean momentum ↔ gun power

Gun4

Gun4 with 10 MW klystron tested up to ~57 MV/m in 2005.

Goal: 60 MV/m
Calculations of thermal load:

- 27 kW of average RF power: \(\Rightarrow 80^\circ C \)

 \((40\text{MV/m}, 900\mu\text{s}, 10 \text{ Hz})\) \(\checkmark\text{done}\)

 \((60\text{MV/m}, 650\mu\text{s}, 30 \text{ Hz})\)

- 130 kW of average RF power: \(\Rightarrow 170^\circ C !!! \)

 \((60\text{MV/m}, 650\mu\text{s}, 30 \text{ Hz})\)

- vacuum
- dark current
- new cathodes !!!
- new gun geometry ?

Courtesy of Frank Marhauser (BESSY)
• sophisticated e− sources are needed for the operation of FELs → RF photo cathode guns

• **PITZ** is a dedicated test facility at DESY in Zeuthen

• **PITZ1** has been successfully finished, and a completely characterized gun has been installed at the VUV-FEL

• the facility upgrade is ongoing, a preliminary booster and first **PITZ2** diagnostics have been taken into operation

• next steps are: study emittance conservation principle and approach the XFEL emittance requirements

• in parallel: do gun power tests and prepare new guns