ECERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Workshop - Traitement des données massives en mécanique des fluides Quantifying uncertainties in large eddy simulations of pollutant dispersion using surrogate models

Mélanie Rochoux*, Géraldine Rea, Nicolas Frebourg, Claire Lamotte, Matthias De Lozzo & Olivier Vermorel

UNCERTAINTY QUANTIFICATION

LARGE EDDY SIMULATIONS

SURROGATE MODEL

AIR QUALITY

What are the challenges in pollutant dispersion numerical simulations?

SAFETY ISSUE

Map the areas with peak concentration of air pollutants

COMPLEXITY

Multi-physics multi-scale problem

- poor information on the emission sources
- strong interaction between the land surface and the near-surface atmosphere

How to represent and characterize the early stage of the smoke plume near the source?

The Mock Urban Setting Test (MUST): The case study

micro-scale

- explicit simulation of the plume made of air pollutants near the emission source
- explicit representation of surfaceatmosphere interactions

Objective: **High-fidelity** simulations and **Uncertainties** for **micro-scale** meteorology and air quality

The Mock Urban Setting Test (MUST): The case study

high-fidelity

- added value of large eddy simulations (LES)
- 3-D unsteady turbulence
- spatial resolution ~1 m
- massively parallel simulations

Objective: **High-fidelity** simulations and **Uncertainties** for **micro-scale** meteorology and air quality

The Mock Urban Setting Test (MUST): The case study

uncertainties

- ensemble of LES-type simulations
- sensitivity to users' choices (physical and numerical parameters)
- impact of meteorological hazards (spatial and temporal intrinsic

Objective: **High-fidelity** simulations and **Uncertainties** for **micro-scale** meteorology and air quality

The Mock Urban Setting Test (MUST): The case study

Intercomparison of LES-type simulations and sensitivity to inlet wind Objective: **High-fidelity** simulations and **Uncertainties** for **micro-scale** meteorology and air quality

Talk's outline

(1) MUST case study

- Experimental settings
- Initial and inlet wind conditions

(2) Best known large eddy simulations

- Solvers: AVBP, YALES2-AE, Meso-NH
- Numerical settings
- Diagnostics

(3) Sensitivity to inlet wind conditions

- Uncertainty quantification in a nutshell
- Inlet wind statistics
- Surrogate models
- Diagnostics

Talk's outline

(1) MUST case study

- Experimental settings
- Initial and inlet wind conditions

(2) Best known large eddy simulations

- Solvers: AVBP, YALES2-AE, Meso-NH
- Numerical settings
- Diagnostics

(3) Sensitivity to inlet wind conditions

- Uncertainty quantification in a nutshell
- Inlet wind statistics
- Surrogate models
- Diagnostics

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION MUST trial 2681829

Experimental settings - Near-neutral conditions (6:30 PM)

container (12 m x 2,4 m x 2,5 m) ➡ regular array of 120 containers

local emission at z = 1,8 m \Rightarrow 200 s, passive tracer (propylene), 225 L/min available measurements for wind and tracer concentration across the container array, upstream and downstream

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION MUST trial 2681829

Initial and inlet wind profile

Talk's outline

(1) MUST case study

- Experimental settings
- Initial and inlet wind conditions

(2) Best known large eddy simulations

- Solvers: AVBP, YALES2-AE, Meso-NH
- Numerical settings
- Diagnostics

(3) Sensitivity to inlet wind conditions

- Uncertainty quantification in a nutshell
- Inlet wind statistics
- Surrogate models
- Diagnostics

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION Large eddy simulation solvers

Resolution of 3-D Navier-Stokes equations with unsteady turbulence

	Meso-NH mesoscale non-hydrostatic model	YALES2	
	Météo-France, Laboratoire d'Aérologie	CORIA - CERFACS	CERFACS - IFPEN
Equations	Structured grid Incompressible (anelastic approximation)	Unstructured grid Low Mach approx.	Unstructured grid Compressible
Container boundary condition	Immersed Boundary Method (Auguste et al.)	Boundary fitted	Boundary fitted
Numerical schemes	 Space: WENO 5 (Lunet et al. 2017) Time: Runge- Kutta 4 	 Space: 4th order centered scheme Time: Runge-Kutta 4 (TFV4A) 	3rd order in space and time, explicit, two-step Taylor-Garlerkin (TTGC)
Subgrid-scale turbulence model	TKE 1.5	WALE (Wall Adaptative Local Eddy Viscosity, Nicoud and Ducros 1999)	WALE (Wall Adaptative Local Eddy Viscosity, Nicoud and Ducros 1999)

<u>AVBP</u>

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION NUMBER OF A STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION

Computational domain and grid

Structured mesh

- 300 m x 300 m x 40 m
- min. resolution = 20 cm
- 150 million of grid cells
- MesoNH = 40 000 h CPU (~20 h) (incompressible anelastic)

Unstructured mesh

- 350 m x 350 m x 50 m
- min. resolution = 30 cm
- 71 million of grid cells
- YALES2 = 27 000 h CPU (~16 h, low Mach)
- $AVBP = 165\ 000\ h\ CPU\ (\sim 68\ h,\ compressible)$

AVBP

MAIN RESULTS

- Acceleration (channel effects) and slowing down induced by the containers, which were measured and captured by LES
- Persistent influence until z = 10 m
- Deviation of the flow direction induced by the containers, which is more important for YALES2-AE and AVBP than for MesoNH

MAIN RESULTS

- Acceleration (channel effects) and slowing down induced by the containers, which were measured and captured by LES
- Persistent influence until z = 10 m
- Deviation of the flow direction induced by the containers, which is more important for YALES2-AE and AVBP than for MesoNH

MAIN RESULTS

- Acceleration (channel effects) and slowing down induced by the containers, which were measured and captured by LES
- Persistent influence until z = 10 m
- Deviation of the flow direction induced by the containers, which is more important for YALES2-AE and AVBP than for MesoNH

MAIN RESULTS

- Acceleration (channel effects) and slowing down induced by the containers, which were measured and captured by LES
- Persistent influence until z = 10 m
- Deviation of the flow direction induced by the containers, which is more important for YALES2-AE and AVBP than for MesoNH

MAIN RESULTS

- Acceleration (channel effects) and slowing down induced by the containers, which were measured and captured by LES
- Persistent influence until z = 10 m
- Deviation of the flow direction induced by the containers, which is more important for YALES2-AE and AVBP than for MesoNH

Tracer concentration

MAIN RESULTS

- Deviation of the plume main axis with respect to the inlet wind direction
- Impact on the plume shape and on the location of min./max. tracer concentration
- Good concentration statistics (Chang and Hanna, 2004)
- Good match in terms of time series when high tracer concentration (> 1 ppm)

Tracer concentration

MAIN RESULTS

- Deviation of the plume main axis with respect to the inlet wind direction
- Impact on the plume shape and on the location of min./max. tracer concentration
- Good concentration statistics (Chang and Hanna, 2004)
- Good match in terms of time series when high tracer concentration (> 1 ppm)

Tracer concentration

MAIN RESULTS

- Deviation of the plume main axis with respect to the inlet wind direction
- Impact on the plume shape and on the location of min./max. tracer concentration
- Good concentration statistics (Chang and Hanna, 2004)
- Good match in terms of time series when high tracer concentration (> 1 ppm)

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION A computing challenge!

Talk's outline

(1) MUST case study

- Experimental settings
- Initial and inlet wind conditions

(2) Best known large eddy simulations

- Solvers: AVBP, YALES2-AE, Meso-NH
- Numerical settings
- Diagnostics

(3) Sensitivity to inlet wind conditions

- Uncertainty quantification in a nutshell
- Inlet wind statistics
- Surrogate models
- Diagnostics

How to take into account uncertainties in the process of model validation? What are the levels of confidence in the model outcomes?

Main steps

- Based on available information: direct or inverse methods (inference, calibration)
- Identification of the *d* explicit and hidden parameters of the computational model
- Characterization of the associated level of knowledge

Main steps

Non-intrusive methods

- The model is used as a black box
- Need to define a training set to approximate the model response

Step 2: Perform simulations while accounting for the identified uncertainties

Main steps

CERFACS

>

Mélanie Rochoux - 2017 TDMF workshop 21

Polynomial Chaos Expansion

$$y = \mathcal{M}(x(\zeta)) = \sum_{\alpha=0}^{N_{p}} \underbrace{\mathcal{V}_{\alpha} \Psi_{\alpha}}_{\alpha}(x(\zeta))$$
Multi-variate polynomials

POLYNOMIAL BASIS

- Choice of the input distribution (uniform ↔ Legendre polynomials)
- Choice of the total polynomial order
- Truncation strategy (full or sparse basis)

COEFFICIENTS

Galerkin projection

- least-squares problem (linear system)
- spectral projection (Gaussian quadrature)

$$\langle \Psi_{\alpha}(\zeta), \Psi_{\beta}(\zeta) \rangle = \int_{\Gamma} \Psi_{\alpha}(\zeta) \Psi_{\beta}(\zeta) \rho_{X}(\zeta) d\zeta$$

$$\langle \Psi_{\alpha}(\zeta), \Psi_{\beta}(\zeta) \rangle = \delta_{\alpha\beta} \parallel \Psi_{\alpha} \parallel^{2} \mathcal{O}_{\alpha\beta}$$
orthogonality

$$\mathbf{y}^{(k)} = \mathcal{M}(\mathbf{x}^{(k)}), \quad k = 1, \cdots, N_{e}$$

training set

Gaussian Process (Kriging)

$$y = \mathcal{M}(x) = \sum_{\alpha=1}^{N_{\rho}} \gamma_{\alpha} \overline{\Psi_{\alpha}}(x)$$
Gaussian Random process

GAUSSIAN RANDOM PROCESS

Fully characterized by zero mean and correlation structure

- Choice of the correlation structure
- Optimization of the hyper parameters (length scale, variance, ...) using maximum likelihood

TRAINING SET

Any finite collection of process values has a joint Gaussian distribution

$$\mathbf{y}^{(k)} = \mathcal{M}(\mathbf{x}^{(k)}), \quad k = 1, \cdots, N_{e}$$

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION Inlet wind statistics

Ensemble of large eddy simulations to characterize the sensitivity of the numerical predictions to the variability in the inlet wind

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION Inlet wind statistics

Ensemble of large eddy simulations to characterize the sensitivity of the numerical predictions to the variability in the inlet wind

BUDGET FOR TRAINING SET

- 30 YALES2-AE simulations
- Each LES corresponds to a different wind inlet condition.

YALES2 GENCI

DESIGN OF EXPERIMENT

- How to select the points of the training set?
 - Halton's low discrepancy sequence
 - Uniform distributions for the inlet wind speed and direction

MUST CASE STUDY | REFERENCE SIMULATIONS | UNCERTAINTY QUANTIFICATION Inlet wind statistics

Ensemble of large eddy simulations to characterize the sensitivity of the numerical predictions to the variability in the inlet wind

BUDGET FOR TRAINING SET

- 30 YALES2-AE simulations
- Each LES corresponds to a different wind inlet condition.

YALES2 GENCI

QUANTITY OF INTEREST

- For which variable we need to assess uncertainty?
 - Mean tracer concentration
 - Focus on a given sensor (no. 9)

Model-Surrogate adequacy → Training error

Accuracy with which the surrogate reproduces the experimental design model evaluations

Target

Model-Surrogate adequacy → Generalization error

Cross-validation (Leave-One Out, LOO) Construction of 30 metamodels, each metamodel using 29 elements of the training set and the remaining element being used for validation

Response surface

Polynomial Chaos

Response surface

Gaussian Process

Gaussian Process

PDF of the mean tracer concentration

Polynomial Chaos

Gaussian Process

Conclusions

Added value of large eddy simulations for microscale meteorology and air quality

- Metric-scale large eddy simulations: Evaluation of epistemic uncertainties
 - Intercomparison of AVBP, MesoNH and YALES2-AE
 - Sensitivity to physical and numerical parameters (computational grid, subgrid-scale model, numerical schemes...)

Design of suitable surrogate models: Evaluation of

aleatory uncertainties induced by inlet wind conditions

- Intercomparison of Polynomial Chaos and Gaussian Process surrogates
- Sensitivity to inlet wind speed and direction

Rea et al. (in preparation), Atmospheric and Environment - Part 1

ECERFACS

Rochoux et al. (in preparation), Atmospheric and Environment - Part 2

Mélanie Rochoux - 2017 TDMF workshop 32

Perspectives

Added value of large eddy simulations for microscale meteorology and air quality

- Metric-scale large eddy simulations: What is the importance of epistemic uncertainties with respect to aleatory uncertainties?
 - Mapping of the epistemic uncertainties estimated through multi-model simulations and of the aleatory uncertainties
 - Quality of inlet wind conditions (meso/micro-scale)

Design of suitable surrogate models: Improve the

- quality and reduce the cost of building surrogates
 - Identification of critical points in the design of experiment
 - Accounting for epistemic uncertainties in the construction of the surrogates

Rea et al. (in preparation), Atmospheric and Environment - Part 1

Rochoux et al. (in preparation), Atmospheric and Environment - Part 2

Thank you for your attention. Any question?

Contact Melanie.Rochoux@cerfacs.fr