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Industrial context
Lean premixed flames for aircraft engines

Industrial goals Improve efficiency
Reduce pollutant emissions

New approach Lean premixed combustion

Technological solutions
Multipoint injection

Staging
Low-swirl

Scientific challenge New flame dynamics to understand

©Gyrostat (Wikimedia, CC-BY-SA 4.0) ©Jeff Dahl (Wikimedia, CC-BY-SA 4.0)
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Scientific Context
Thermo-acoustic instabilities

Candel, S., Proceedings of the Combustion Institute 29, 2002
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Experimental Setup
Low swirl burner

From Moriyama et al., PRTEC 2016

φ=0.66→0.70

Power=45→48 kW

Ubulk=10 m/s
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Experimental Setup
Low swirl burner

From Moriyama et al., PRTEC 2016

φ=0.66→0.70

Power=45→48 kW

Ubulk=10 m/s

Cheng et al., J. Eng. Gas Turbines Power 130, 2008

Flame stabilization without recirculation

Ultralow NOx and CO emissions potential
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Experimental Setup
Simultaneous high-speed OH and acetone PLIF

From Moriyama et al., PRTEC 2016

Frame rate: 10000 fps

Number of images: 43684

r

z

Laser sheet thickness: 1 mm

Resolution: 0.13 mm/pixel

Pressure transducer and OH* photomultiplier recorded at 200 kHz.
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Pressure transducer signal
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Operating Point
Thermo-acoustic instability

Stacked DMD1: OH-PLIF (4×4 bins), acetone-PLIF (4×4 bins) and
pressure signal, 5000 samples
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1 Richecoeur et al., Center for Turbulent Research, Proceedings of the Summer Program 2012
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Stacked DMD1: OH-PLIF (4×4 bins), acetone-PLIF (4×4 bins) and
pressure signal, 5000 samples
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Stacked DMD1: OH-PLIF (4×4 bins), acetone-PLIF (4×4 bins) and
pressure signal, 5000 samples
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Operating Point
Thermo-acoustic instability

DMD Mode: M(x , y , t) = A(x , y)e iφ(x,y)e(a+iω)t
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Thermo-acoustic instability

DMD Mode: M(x , y , t) = A(x , y)e iφ(x,y)e(a+iω)t
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Thermo-acoustic instability

DMD Mode: M(x , y , t) = A(x , y)e iφ(x,y)e(a+iω)t
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Therkelsen et al., Combustion and Flame 160, 2013

Ring vortices are produced at the frequency of
the instability and convected with the flow
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Temporal evolution
Approach
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Possibility to use common
time-series processing tools.
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Temporal evolution
Frequency maps

Dominant frequency in the spectrum

200 336 500
Frequency [Hz]

20 40

20

40

60

80

X [mm]

Z
[m

m
]

0-1 s

11/15



TDMF Workshop

A.Renaud

Low-swirl burner
Experimental setup

Operating Point

Temporal evolution

Conclusion and
perspectives

Temporal evolution
Frequency maps

Dominant frequency in the spectrum

200 336 500
Frequency [Hz]

20 40

20

40

60

80

X [mm]

Z
[m

m
]

0-1 s

20 40
X [mm]

1-2 s

11/15



TDMF Workshop

A.Renaud

Low-swirl burner
Experimental setup

Operating Point

Temporal evolution

Conclusion and
perspectives

Temporal evolution
Frequency maps

Dominant frequency in the spectrum

200 336 500
Frequency [Hz]

20 40

20

40

60

80

X [mm]

Z
[m

m
]

0-1 s

20 40
X [mm]

1-2 s

20 40
X [mm]

2-3 s

20 40
X [mm]

3-4 s

11/15



TDMF Workshop

A.Renaud

Low-swirl burner
Experimental setup

Operating Point

Temporal evolution

Conclusion and
perspectives

Temporal evolution
Instantaneous signal properties: Hilbert transform and

analytic signal

Hilbert transform of a signal s(t):

Hs(t) =
1
π

∫ ∞

−∞

s(τ)
t − τ

dτ (1)

Analytic signal sa(t):

sa(t) = s(t) + iHs(t)

= A(t)e iφ(t)

(2)

Instantaneous amplitude: A(t)

Instantaneous phase: φ(t)

Instantaneous frequency: 1
2π

dφ(t)
dt
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Low-swirl burner
Summary

Increasing the equivalence ratio results in an increase in pressure
fluctuations due to the triggering of a thermo-acoustic
instability.

The instability is associated with the convection of structures in
the flame brush, corresponding to the effect of vortex rings
coming from the rim of the injector.

Appearance of the instability:

1 First in the outer parts (vortices)
2 Then on the inside (flame motions)
3 Coupling of the two fluctuations enables ”bursts” of flame
4 Effect of the change in flame speed
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Conclusion and perspectives

Study of high-speed recordings during non-stationary events
• High speed video = set of still pictures or set of temporal signals

from a sensor array

Representation and analysis of data
• I(x,y,t,ω,...)
• Loss of ergodic hypothesis

The stay of A. Renaud at Jaxa and Keio University has been supported by the Erasmus
Mundus EASED program (Grant 2012-5538/004-001) coordinated by CentraleSupelec.
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