A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Time-resolved analysis of thermo-acoustic instability triggering in a low-swirl burner using simultaneous high-speed laser diagnostics.

> Antoine Renaud¹, Kotaro Moriyama², Takeshi Yokomori², Shigeru Tachibana³

¹Laboratoire EM2C, CNRS, CentraleSupelec ²Faculty of Science and Technology, Keio University ³Aeronautical Technology Directorate, Japan Aerospace Exploration Agency (JAXA)

November 28, 2017

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Industrial context

Lean premixed flames for aircraft engines

Industrial goals	Improve efficiency
	Reduce pollutant emissions
New approach	Lean premixed combustion
Technological solutions	Multipoint injection
	Staging
	Low-swirl
Scientific challenge	New flame dynamics to understand

©Gyrostat (Wikimedia, CC-BY-SA 4.0)

©Jeff Dahl (Wikimedia, CC-BY-SA 4.0)

TDMF Workshop A.Renaud Low-swirl burner Experimental setup Operating Point Temporal evolution	Scientific Context Thermo-acoustic instabilities
	Acoustics
	Heat release

Acoustics

Candel, S., Proceedings of the Combustion Institute 29, 2002

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Scientific Context

Thermo-acoustic instabilities

Candel, S., Proceedings of the Combustion Institute 29, 2002

From Moriyama et al., PRTEC 2016

From Moriyama et al., PRTEC 2016

Experimental Setup

Simultaneous high-speed OH and acetone PLIF

Frame rate: 10000 fps

Number of images: 43684

From Moriyama et al., PRTEC 2016

Laser sheet thickness: 1 mm

TDMF Workshop

Experimental setup

Resolution: 0.13 mm/pixel

Pressure transducer and OH* photomultiplier recorded at 200 kHz.

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Experimental Setup

Simultaneous high-speed OH and acetone PLIF

OH-PLIF

Acetone-PLIF

Time [s]

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Pressure transducer signal

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Pressure transducer signal

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Pressure transducer signal

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Thermo-acoustic instability

Stacked DMD¹: OH-PLIF (4×4 bins), acetone-PLIF (4×4 bins) and pressure signal, 5000 samples

¹ Richecoeur et al., Center for Turbulent Research, Proceedings of the Summer Program 2012

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Thermo-acoustic instability

OH-PLIF

Stacked DMD¹: OH-PLIF (4×4 bins), acetone-PLIF (4×4 bins) and pressure signal, 5000 samples

¹ Richecoeur et al., Center for Turbulent Research, Proceedings of the Summer Program 2012

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Thermo-acoustic instability

Acetone-PLIF

Stacked DMD¹: OH-PLIF (4×4 bins), acetone-PLIF (4×4 bins) and pressure signal, 5000 samples

¹ Richecoeur et al., Center for Turbulent Research, Proceedings of the Summer Program 2012

A.Renaud

Low-swirl burner Experimental setup

Temporal evolutio

Conclusion and perspectives

Operating Point

Thermo-acoustic instability

DMD Mode: $M(x, y, t) = A(x, y)e^{i\phi(x, y)}e^{(a+i\omega)t}$

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Thermo-acoustic instability

DMD Mode:
$$M(x, y, t) = A(x, y)e^{i\phi(x, y)}e^{(a+i\omega)t}$$

OH-PLIF

Acetone-PLIF

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Operating Point

Thermo-acoustic instability

DMD Mode:
$$M(x, y, t) = A(x, y)e^{i\phi(x,y)}e^{(a+i\omega)t}$$

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

Frequency maps

Dominant frequency in the spectrum

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

Frequency maps

Dominant frequency in the spectrum

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Temporal evolution

Frequency maps

Dominant frequency in the spectrum

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

Instantaneous signal properties: Hilbert transform and analytic signal

Hilbert transform of a signal s(t):

$$H_{s}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\tau)}{t - \tau} d\tau$$
(1)

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

Instantaneous signal properties: Hilbert transform and analytic signal

Hilbert transform of a signal s(t):

$$H_{s}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\tau)}{t - \tau} d\tau$$
(1)

Analytic signal $s_a(t)$:

$$s_a(t) = s(t) + iH_s(t) \tag{2}$$

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

Instantaneous signal properties: Hilbert transform and analytic signal

Hilbert transform of a signal s(t):

$$H_{s}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\tau)}{t - \tau} d\tau$$
(1)

Analytic signal $s_a(t)$:

$$s_a(t) = s(t) + iH_s(t) = A(t)e^{i\phi(t)}$$
(2)

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Temporal evolution

Instantaneous signal properties: Hilbert transform and analytic signal

Hilbert transform of a signal s(t):

$$H_{s}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\tau)}{t - \tau} d\tau$$
(1)

Analytic signal $s_a(t)$:

$$s_a(t) = s(t) + iH_s(t) = A(t)e^{i\phi(t)}$$
⁽²⁾

Instantaneous amplitude: A(t)

Instantaneous phase: $\phi(t)$

Instantaneous frequency: $\frac{1}{2\pi} \frac{d\phi(t)}{dt}$

A.Renaud

Low-swirl burner Experimental setup Operating Point

Temporal evolution

Conclusion and perspectives

Temporal evolution

Phase evolution

DMD Mode

A.Renaud

Low-swirl burner Experimental setup Operating Point

Temporal evolution

Conclusion and perspectives

Temporal evolution

Phase evolution

DMD Mode

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

A.Renaud

Low-swirl burner Experimental setup Operating Point

Conclusion and perspectives

Temporal evolution

A.Renaud

- Low-swirl burner Experimental setup Operating Point
- Temporal evolution

Conclusion and perspectives

Temporal evolution

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Low-swirl burner Summary

• Increasing the equivalence ratio results in an increase in pressure fluctuations due to the triggering of a thermo-acoustic instability.

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

- Increasing the equivalence ratio results in an increase in pressure fluctuations due to the triggering of a thermo-acoustic instability.
- The instability is associated with the convection of structures in the flame brush, corresponding to the effect of vortex rings coming from the rim of the injector.

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

- Increasing the equivalence ratio results in an increase in pressure fluctuations due to the triggering of a thermo-acoustic instability.
- The instability is associated with the convection of structures in the flame brush, corresponding to the effect of vortex rings coming from the rim of the injector.
- Appearance of the instability:
 - 1 First in the outer parts (vortices)

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

- Increasing the equivalence ratio results in an increase in pressure fluctuations due to the triggering of a thermo-acoustic instability.
- The instability is associated with the convection of structures in the flame brush, corresponding to the effect of vortex rings coming from the rim of the injector.
- Appearance of the instability:
 - **1** First in the outer parts (vortices)
 - 2 Then on the inside (flame motions)

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

- Increasing the equivalence ratio results in an increase in pressure fluctuations due to the triggering of a thermo-acoustic instability.
- The instability is associated with the convection of structures in the flame brush, corresponding to the effect of vortex rings coming from the rim of the injector.
- Appearance of the instability:
 - 1 First in the outer parts (vortices)
 - 2 Then on the inside (flame motions)
 - **3** Coupling of the two fluctuations enables "bursts" of flame

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

- Increasing the equivalence ratio results in an increase in pressure fluctuations due to the triggering of a thermo-acoustic instability.
- The instability is associated with the convection of structures in the flame brush, corresponding to the effect of vortex rings coming from the rim of the injector.
- Appearance of the instability:
 - 1 First in the outer parts (vortices)
 - 2 Then on the inside (flame motions)
 - 3 Coupling of the two fluctuations enables "bursts" of flame
 - 4 Effect of the change in flame speed

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Conclusion and perspectives

- Study of high-speed recordings during non-stationary events
 - High speed video = set of still pictures or set of temporal signals from a sensor array

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Conclusion and perspectives

- Study of high-speed recordings during non-stationary events
 - High speed video = set of still pictures or set of temporal signals from a sensor array
- Representation and analysis of data
 - I(x,y,t,ω,...)
 - Loss of ergodic hypothesis

A.Renaud

Low-swirl burner Experimental setup Operating Point Temporal evolution

Conclusion and perspectives

Conclusion and perspectives

- Study of high-speed recordings during non-stationary events
 - High speed video = set of still pictures or set of temporal signals from a sensor array
- Representation and analysis of data
 - I(x,y,t,ω,...)
 - Loss of ergodic hypothesis

The stay of A. Renaud at Jaxa and Keio University has been supported by the Erasmus Mundus EASED program (Grant 2012-5538/004-001) coordinated by CentraleSupelec.

A.Renaud

Appendix

A.Renaud

Appendix

A.Renaud

Appendix

A.Renaud

Appendix

A.Renaud

Appendix

Dynamic Mode Decomposition

16/15

A.Renaud

Appendix

Dynamic Mode Decomposition

