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Data assimilation, the science of compromises

Context characterizing a (complex) system and/or forecasting its
evolution, given several heterogeneous and uncertain
sources of information

Modéle Observations
-

Assimilation

Widely used for geophysical fluids (meteorology, oceanography,
atmospheric chemistry. .. ), but also in other numerous
domains (e.g. nuclear energy, medicine, agriculture

planning. . .)
Closely linked to inverse methods, control theory, estimation theory,
filtering. . .
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A daily example: numerical weather forecast
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Data assimilation, the science of compromises

Numerous possible aims:

> Forecast: estimation of the present state (initial condition)

v

Model tuning: parameter estimation

v

Inverse modeling: estimation of parameter fields

v

Data analysis: re-analysis (model = interpolation operator)

v

OSSE: optimization of observing systems
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The best estimate

Several pieces of information:

» Model

v

Prior (or background)
value — Find the best possible estimate x?

v

Observations

v

Statistics
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The best estimate

Several pieces of information:

» Model

> Prior (or background)
value

v

Observations

v

Statistics

— Find the best possible estimate x?

What does the best possible estimate means?

v

Best: which criterion?

v
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Estimate: deterministic value? pdf? some moments only of a pdf?

.,
i




Objectives for this lecture

» introduce data assimilation and its several points of view
> give an overview of the main families of methods

> point out the main difficulties and current corresponding answers
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Objectives for this lecture

» introduce data assimilation and its several points of view
> give an overview of the main families of methods

> point out the main difficulties and current corresponding answers

Outline
1. Data assimilation for dummies: a simple model problem

2. Generalization: linear estimation theory, variational and sequential
approaches

3. Some current challenges

An introduction to data assimilation Workshop TDMF, Orsay,



The simplest possible
model problem
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Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value ? — least squares approach
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Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value ? — least squares approach

Example a prior value x? = 19°C and an observation y = 21°C of the
(unknown) present temperature x.

> Let J(x) =5 [(x —x®)? + (x — y)?]

xb+y_

20
> 0°C

> Ming J(x) — x*=
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Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value ? — least squares approach

Example a prior value x? = 19°C and an observation y = 21°C of the
(unknown) present temperature x.

> Let J(x) = 3 [(x = x2)2 + (x = )]

b
> Ming J(x) — x*= X ;ry =20°C

If # units: x® = 66.2°F and y = 69.8°F
> Let H(x) = gx +32 observation operator
1
Let J(x) = 5 [(H(x) - xP)? 4+ (H(x) — ¥)?]

Min, J(x) — x?=20°C
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Model problem: least squares approach

Drawback # 1: if observation units are inhomogeneous
xb =19°C and y = 69.8°F

1
> J(x) = 5 [(x —x®)? + (H(x) —y)?)] — x*=20.53°C
— adding apples and oranges !!

siTe]
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Model problem: least squares approach

Drawback # 1: if observation units are inhomogeneous
xb =19°C and y = 69.8°F

1
> J(x) = 5 [(x —x®)? + (H(x) —y)?)] — x*=20.53°C
— adding apples and oranges !!

Drawback # 2: if observation accuracies are inhomogeneous

b
XY _q9.67°C

If x® is twice more accurate than y, one should obtain x* =

— J should be J(x) :% [<)<1_/;<b>2+ (X;y>21

rd
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Model problem: linear statistical approach

Reformulation in a probabilistic framework:

> the goal is to find an estimator X? of the true unknown value x
» x’ and y are realizations of random variables X? and Y

> One is looking for an estimator (i.e. a r.v.) X2 that is
» linear: X? = apX? + a,Y (in order to be simple)

unbiased: E(X?) = x (it seems reasonable)

v

v

of minimal variance: Var(X?) minimum (optimal accuracy)

— BLUE (Best Linear Unbiased Estimator)

10/
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Model problem: linear statistical approach

Let X =x+eband Y =x+¢° with

Hypotheses

» E(e®) = E(¢°) =0 unbiased background and measurement device
> Var(e®) =02  Var(e°) = o2 known accuracies

» Cov(eb,e°) =0 independent errors
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Model problem: linear statistical approach

Let X =x+eband Y =x+¢° with

Hypotheses

» E(e®) = E(¢°) =0 unbiased background and measurement device

> Var(e®) =02  Var(e°) = o2 known accuracies

» Cov(eb,e°) =0 independent errors
Since X? = apXP? + oY = (ap + qo)x + ape® + e :

> E(X?) = (ap 4 ao)x + ap E(P) 40 E(e°) = ap+ao=1
~—— ——

=0 =0

v d
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Model problem: linear statistical approach

Let X =x+eband Y =x+¢° with

Hypotheses

» E(e®) = E(¢°) =0 unbiased background and measurement device

> Var(e®) =02  Var(e°) = o2 known accuracies

» Cov(eb,e°) =0 independent errors
Since X? = apXP? + oY = (ap + qo)x + ape® + e :

> E(X?) = (ap 4 ao)x + ap E(P) 40 E(e°) = ap+ao=1
SN—— SN——
=0 =0

> Var(X?) = E [(X? — x)?] = E [(ape® + 20e°)?] = 0202 + (1 — ap)?02

1o} o2
— =0 = ap= °

Ulz)Jrag
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Model problem: linear statistical approach

BLUE

1 ., 1

X2 = b o
1 1

o2 o2

rd
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Model problem: linear statistical approach

BLUE

1., 1
2z 3
X= g =X s (Y- X)
= = Op 05 N———
o2 + o2 ~——innovation
gain

rd
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Model problem: linear statistical approach

BLUE

1 1
SX+5Y 2
Y v b 9% b
X = —bs 7 =X+ 2 (Y =X
S~ 4= 0p + 05 ~——
0—12’ gg " innovation
gain
11 ,
Its accuracy:  [Var(X?)] " = - + — accuracies are added
oy 02

rd
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Model problem: linear statistical approach

BLUE

1

1
SX+5Y 2
2 Y b 9 b
x2="b_ %o _xbi__ (Y — Xb)
11 7o X0
o2 02 ~——innovation
b o
gain
11 ,
Its accuracy:  [Var(X?)] " = - + — accuracies are added
oy 02

» Hypotheses on the two first moments of £°,£° lead to results on the
two first moments of X?.
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Model problem: linear statistical approach

Variational equivalence

This is equivalent to the problem:

Minimize J(x) = 5 [(X —x0)? L (x= Y)z]
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Model problem: linear statistical approach

Variational equivalence

This is equivalent to the problem:

Minimize J(x) = 5 [(X —x0)? L (x= Y)z]

Remarks:

» This answers the previous problems of sensitivity to inhomogeneous
units and insensitivity to inhomogeneous accuracies

» This gives a rationale for choosing the norm for defining J

1 1 _

> J(x7) = 5+ — = [Var(x?)] !
N—— Op 0o N————
convexity accuracy

rd
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Model problem: linear statistical approach

Geometric interpretation E(c°s?) =0 = E(?(Y — X;)) =0

Y°

g°

x3

— orthogonal projection for the scalar product < Zj, Z» >= E(Z1Z>) for unbiased
random variables.

v d
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Model problem: Bayesian approach

> x: a realization of a random variable X. What is the pdf p(X|Y)?

> Based on the Bayes rule:

likekihood prior
—
P(Y=y|X=x) P(X=x)
P(Y =y)
——

PX=x|Y=y)=

normalisation factor

siTe]
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Model problem: Bayesian approach

> x: a realization of a random variable X. What is the pdf p(X|Y)?

> Based on the Bayes rule:

likekihood prior
—
P(Y=y|X=x) P(X=x)
P(Y =y)
——

PX=x|Y=y)=

normalisation factor

> Back to our example:
» Background X? ~ N(19,02)
» Observation y = 21°C, and Y = X + £° with £° ~ N(0,02)

v d
nfrnats Fnainematcs
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Model problem: Bayesian approach

» Background X® ~ N (19, 0%)
» Observation y = 21°C, and Y = X + ° with £° ~ N(0,02)

P(Y =21|X =x) P(X = x)

P(X =x|Y =21)= Y =)

siTe]
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Model problem: Bayesian approach

v

Background X® ~ N(19, 0%)
Observation y = 21°C, and Y = X + £° with £° ~ N(0, 02)

v

P(Y =21|X =x) P(X = x)

P(X =x|Y =21)= Y =)

v

_ 1 (x—19)2)
Prior: P(X =x) = P(X? =x) = ex <
(X=x0=PX*=x)= o op (P

v

Likelihood:

p(Y=21| X=x) = p(e°=21-x| X =x)

p(so =21 — X) €° is assumed independent from X

1 (21 - x)2
V2mo, 202

rd
[ —
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Model problem: Bayesian approach

» Background X® ~ N(19, 0%)
» Observation y = 21°C, and Y = X +° with £° ~ N(0,02)

P(Y =21|X = x) P(X = x)

P(X=x|Y =21)=
P(Y =vy)
» Hence
(X = x) p(Y = 21| X = x) 1 (x —19)2 1 <(217x)2)
=X = =X = exp | — exp | —
P i V27moy P 202 V2ro, P 202
_ 2
— Koexp (- X Zma)
2U§
519+ %21 1 1\ !
withmy=-2t—— 7 and o2=| =+ =
2 T AR CAE

rd
ot 7 manenats
Workshop TDMF, Orsay, 2017 17/57 h7m/—

E. Blayo - An introduction to data assimilation



Model problem: Bayesian approach

» Background X? ~ N(19, 02)

» Observation y = 21°C, and Y = X +° with £° ~ N(0,02)
P(Y =21|X = x) P(X = x)

P(X =x|Y =21)=

P(Y =vy)
» Hence
(X = x) p(Y = 21| X = x) L (x —19)2 1. < (21—x)2)
= X = = X = X — X —
P i V2moyp P 20’% V2T oo P 20’3
_ 2
_ Kexp(_w)
202
1 1 _
?19+7§21 ) 1 1 1
with ma:blil and 0% = —+ =
4 1 o o2
P 2 b o
b o

— X|Y =21 ~ N(m,,0?)
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Model problem: Bayesian approach
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Model problem: Bayesian approach




Model problem: synthesis

Data assimilation methods are often split into 2-3 families:

» Variational methods: minimization of a cost function (least squares
approach)

> Linear statistical approach: computation of the BLUE (with
hypotheses on the first two moments)

» Bayesian approach: approximation of pdfs (with hypotheses on the pdfs)

» There are strong links between those approaches, depending on the
case (linear, Gaussian...)

.
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Model problem: synthesis

Data assimilation methods are often split into 2-3 families:

» Variational methods: minimization of a cost function (least squares
approach)

> Linear statistical approach: computation of the BLUE (with
hypotheses on the first two moments)

» Bayesian approach: approximation of pdfs (with hypotheses on the pdfs)

» There are strong links between those approaches, depending on the
case (linear, Gaussian...)

If you have understood this previous stuff, you have understood (almost)
everything on data assimilation.
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Generalization:
variational approach

e
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Generalization: arbitrary number of unknowns and observations

X1
To be estimated: x = : eR"
Xp
1
Observations: y = : € RP
Yp

Observation operator: y = H(x), with H: R” — R”
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Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

X1
X . x1+x2
If x — 2 and y= an observatlo_n of ==
X3 an observation of x4
X4
. 1300
then H(x) =Hx with H=
0 0 0 1

UNIVERSITE]
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Generalization: arbitrary number of unknowns and observations

X1
To be estimated: x = : eR"
Xn
1
Observations: y = : € RP

Yp

Observation operator: y = H(x), with H: R” — R”

1
Cost function: J(x) = 5 |H(x) —y|? with ||.|| to be chosen.
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Generalization: arbitrary number of unknowns and observations
X1
To be estimated: x = : eR”
Xn
7N
Observations: y = : € RP
Yp
Observation operator: y = H(x), with H: R” — R”

1
Cost function: J(x) = = ||[H(x) — y|? with ||.|| to be chosen.
5 y

Remark

(Intuitive) necessary (but not sufficient) condition for the existence of a
unique minimum:

NIVERSITE]
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Formalism “background value + new observations”

7 — xb <— background
Ty +— new observations

The cost function becomes:

1 1
S = SlIx=xE S IHE) - I

Ib Jo

RSITE]
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Formalism “background value + new observations”

7 — xb <— background
Ty +— new observations

The cost function becomes:

1 1
S = SlIx=xE S IHE) - I

Ib Jo

The necessary condition for the existence of a unique minimum (p > n)
is automatically fulfilled.

-
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If the problem is time dependent

> Observations are distributed in time: y = y(t)

» The observation cost function becomes:

1 N
Jo(x) = 3 Z [ Hi(x(t:)) — y(t:)]12

siTe]
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If the problem is time dependent

> Observations are distributed in time: y = y(t)

» The observation cost function becomes:

1 N
Jo(x) = 5 Z [ Hi(x(t:)) — y(t:)]12

> There is a model describing the evolution of x: % = M(x) with

x(t = 0) = xo. Then J is often no longer minimized w.r.t. x, but
w.r.t. Xo only, or to some other parameters.

1 1<
Jo(x0) = 5 > IHi(x(t)) = y(t)|2 = > > IHi (Mo (x0)) — y(£)II2
i=0

i=0

rd
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If the problem is time dependent

b
obs
L, obs
m Previous forecast
obs
X,
%
J, obs
obs
T Time
3DVAR Assimilation window
1 1<
Jxo) = Slxo=xglls  +5 D IHI(x(t) — y(8)IIZ
S i=0

background term J ;
& b observation term J,

v d
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jp(x0) + Jo(x0) = = [0 —x°|[3+ 5 Hi(Mo—(x0)) — y(t:)|12
2 2
:0

> If H and M are linear then J, is quadratic.

RSITE]
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(x0) + Jo(x0) = 5 Ilxo = %[5+ 5 D [IHi(Mose,(x0)) — y(1) 15
i=0

> If H and M are linear then J, is quadratic.

» However J, generally does not have a unique minimum, since the
number of observations is generally less than the size of xq (the
problem is underdetermined: p < n).

@5t

Example: let (x{,x}) = (1,1) and y = 1.1 an observa-
tion of %(Xl + x2).

1 2
Jo(x1,x2) = 3 (% - 1-1)

UNIVERSITE]
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Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(%0) + Jo(x0) = 5 Ilxo —x°[F+ 5 > [IHi(Mo-se,(x0)) —y(t) 12
i=0

» If H and M are linear then J, is quadratic.

» However it generally does not have a unique minimum, since the
number of observations is generally less than the size of xq (the
problem is underdetermined).

» Adding J, makes the problem of minimizing J = J, + Jp well posed.

(05 fxoy)-1.17+x-0. 0 sty-1 08

Example: let (xf,x}) = (1,1) and y = 1.1 an observa-
tion of 1(x1 +x2). Let (x,x?) = (0.9,1.05)

1
Jxa,0) = <x1 —;—x2

2 1 2 2 !
5 - 1.1) +3 [(x1 — 0.9)* + (x2 — 1.05)%] .

Jo b
— (x@, x§) = (0.94166...,1.09166...)




Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(%0) + Jo(x0) = 5 [Ix0 =x"[5+ 5 D IIHi(Mo-s(x0)) —y(8)13
i=0
» If H and/or M are nonlinear then J, is no longer quadratic.
Example: the Lorenz system (1963)

dx

aza(y—x)

d
d—};zﬂx—y—xz
dz_ n
i vz + xy

Xobs ti )) dt

|\>|r—l
&Mz
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Uniqueness of the minimum 7

J(x0)

N
1 1
= J(%0) +Jo(x0) = 5 lIxo = x[§+5 > [ Hi( Mo, (x0)) —y(8)]3

i=0

> If H and/or M are nonlinear then J, is no longer quadratic.

time = 1 Assimilation time = 2
\ e,
35000
2000 ~
30000 \
aooo 25000 \
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$5—T5 o 5 oo To 15 2o Yo a5 o w5 5o 1o 15 7o
vy eror Yof e
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80000 |
[
70000} ', | 200000
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Uniqueness of the minimum 7

J(x0) = Jofxo) + Jofxc) = 5 oo =¥+ 5 D (Moo (x0)) — ¥(2)3

i=0

> If H and/or M are nonlinear then J, is no longer quadratic.

10000

8000
6000

2
4000
2000
)

90000,

80000
700001/,

60000
50000
£ 40000
30000
20000
10000

9%

> Adding J, makes it “more quadratic” (Jp is a regularization term),

— Assimilation time = 2

35000
30000 ™N
25000
20000
15000
10000
5000/
9645 40 ©5 _00 05 10 15 20
¥(0) error

250000 Assimilation time = 10

o J
moon“"’i”\"i{h N V'\l
100000 1 ""," r)' \Mlu

50000/

5 00 05
Y(0) error

but J = J, + J, may however have several local minima.
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A fundamental remark before going into minimization
aspects

Once J is defined (i.e. once all the ingredients are chosen: control
variables, norms, observations. .. ), the problem is entirely defined. Hence
its solution.

The “physical” (i.e. the most important) part of varia-
tional data assimilation lies in the definition of J.

The rest of the job, i.e. minimizing J, is “only” technical work.

Implementation: 3D-VAR, 3D-FGAT, 4D-VAR, incremental 4D-VAR...

-
RSITE| informatics #Fmathematics.
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Minimizing J

J(x) Ip(x) + Jo(x)

S = x)TB T = xb) + 2 (Hx— ) TR (Hx — )

Optimal estimation in the linear case

xX=x+ (B 1+HTRIH)IHTR™! (y—Hx?)
N e’

gain matrix innovation vector
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Minimizing J

J(x)

Jo(x) + Jo(x)
S = x)TB T = xb) + 2 (Hx— ) TR (Hx — )

Optimal estimation in the linear case

xX=x+ (B 1+HTRIH)IHTR™! (y—Hx?)
N e’

gain matrix innovation vector

J(xo) = %(xo — xb)TB 1 (xo — x?)
N

1 _
+35 > Iyi = HiMo ixo] " R [yi — HiMo,ixo]
i=1

With a linear evolution model

N -1 N
B4+ MJ,,-H,-TR,.-IH,-MO,,] S MT TRy, — HiMo )
i=1 i=1

x? =xP 4+

UNIVERSITE]
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Minimizing J

Given the size of n and p, it is generally impossible to handle explicitly H,
B and R. So the direct computation of the gain matrix is impossible.

» even in the linear case (for which we have an explicit expression for
x?), the computation of x? is performed using an optimization algorithm.
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Minimizing J: descent methods

Descent methods for minimizing the cost function require the knowledge
of (an estimate of) its gradient.

iso-J curves

Xk+1 = Xk + o di

—VJ(xk) gradient method
— [Hess(J)(xk)] * VJ(xk)  Newton method
with dy = { —Bx VJ(xx) quasi-Newton methods (BFGS, ...)
2
—VJ(xx) + %dk,l conjugate gradient

rd
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Getting the gradient is not obvious

It is often difficult (or even impossible) to obtain the gradient through
the computation of growth rates.

Example:

{ P _ () tefo.7) with u = .
x(t=0)=u Un
o 1 T __ obs 2 i
J(u) = . /0 [Ix(t) — x*>(t)|| — requires one model run
oJ
90 W [J(u+aer) —J(u)]/a
VJ(u) = : ~ :
;JJ () [J(u+ae,) — J(u)] /o
n — n+ 1 model runs

rd
ot P manemats
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Getting the gradient is not obvious

In actual large scale applications like meteorology / oceanography,
n=[u] = O(10° — 10°) — this method cannot be used.

In such cases, the adjoint method provides an efficient way to compute
VJ.
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Example: an adjoint for the Burgers' equation

g“ u@—ygi’;:f x €10, L[, t € [0, T]
u(0,t) = 1(t) u(L,t) =4o(t) tel0,T]
u(x,0) = w(x)  xe[0,L]

> u°(x, t) an observation of u(x, t)

» Cost function: J(up) / / u(x, t) — u*(x, t)) dx dt

siTe]
E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 37/



Example: an adjoint for the Burgers' equation

g“ uaufy%:f x €]0, L[, t € [0, T]
u(0,t) = ¥1(t) u(L,t) =1o(t) te€[0,T]
u(x,0) = w(x)  xe[0,L]

> u°*(x, t) an observation of u(x, t)

» Cost function: J(up) / / u(x, t) — u™(x, t)) dx dt

Adjoint model

2
@4_ gp+ 6Z—u—u°b5 x €]0, L[, t € [0, T]

P(O, t) =0 p(L) t) =0 te [Oa T]
p(x, T)=0  x €0, L] final condition !! — backward integration

siTg nfrnats Fnainematcs
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Example: an adjoint for the Burgers' equation

du du 0?u
E Ua*yﬁ—f XG]O,L[,tE[O,T]

U(O, t) = wl(t) U(L7 t) = ¢2(t) te [07 T]
u(x,0) = up(x) x € [0, L]

> u°*(x, t) an observation of u(x, t)

» Cost function: J(up) / / u(x, t) — u™(x, t)) dx dt

Adjoint model

2
@4_ gp+ 6Z—u—u°bs x €]0, L[, t € [0, T]

ot
P(O, t) =0 p(L) t) =0 te [05 T]
p(x, T)=0  x €0, L] final condition !! — backward integration

Gradient of J

VJ=—p(.,0)  function of x

I1TE| informatics #Fmathematics.
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Getting the gradient is not obvious

In actual large scale applications like meteorology / oceanography,
n=[u] = O(10° — 10°) — this method cannot be used.

In such cases, the adjoint method provides an efficient way to compute
VJ.

It requires writing a tangent linear code and an adjoint code (beyond the
scope of this lecture):
> obeys systematic rules

> is not the most interesting task you can imagine

> there exists automatic differentiation softwares:
— cf http://www.autodiff.org

rd
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Generalization:
linear statistical approach
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Generalization: linear statistical approach
X1 y1

To be estimated: x = | € R" Observations: y = [ €eR’

Xn Yp

Linear observation operator: y = H(x) = Hx

Statistical framework:
> y is a realization of a random vector Y
» One is looking for the BLUE, i.e. a r.v. X? that is
» linear: X? = AY with size(A) = (n, p)
» unbiased: E(X?) =x

» of minimal variance: Var(X?) E Var(X?) minimum
i=1

S S—
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Generalization: linear statistical approach
X1 y1

To be estimated: x = | € R" Observations: y = [ €eR’

Xn Yp

Linear observation operator: y = H(x) = Hx

Statistical framework:

> y is a realization of a random vector Y

» One is looking for the BLUE, i.e. a r.v. X? that is
» linear: X? = AY with size(A) = (n, p)
» unbiased: E(X?) =x

» of minimal variance: Var(X?) E Var(X?) minimum
i=1

Gauss-Markov theorem: A = (HTR™'H)"*H'R™!

siTe] nformtics P nathematic
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Generalization: linear statistical approach

Background: X = x +¢€”  and new observations: Y = H(x) + €°

Hypotheses:

> H(x) = Hx linear observation operator
» E(e’) =0and E(e°) =0  unbiased background and observations
» Cov(eb,e°) =0 independent background and observation errors

» Cov(e”) = B and Cov(e®) =R  known accuracies and covariances

BLUE

X?=X+ (B P+H'RH)'H'R™? (Y -HXb

gain matrix innovation vector

with [Cov(Xa)]_:l =B '+H'R'H accuracies are added

v d
siTe]
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Link with the variational approach

Statistical approach: BLUE

X=X+ (B '+H R H) TH'R}(Y — HX®)
with Cov(X°) = (B™' + H'R'H)!
Variational approach in the linear case
1 1
Jx) = 3 Ix—x"Il5  + 5 IIH(x) -yl

= )BT —x") + 2 (Hx—y) R (Hx —y)

min Jx) X = x* + (B +H'TR'H) 'H'R™ (y . Hx")
XE

rd
[ —
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Link with the variational approach

Statistical approach: BLUE

X°=X"+ (B '+HR'H)TH'R'(Y — HX")
with Cov(X?) = (B™' + H'R™'H) "
) = Sl S IHG) I
= )BT —x") + 2 (Hx—y) R (Hx —y)

min Jx) X = x* + (B +H'TR'H) 'H'R™ (y . Hx")
xe

Same remarks as previously

> The linear statistical approach rationalizes the choice of the norms for J,
and Jp in the variational approach.

> [Cov(X*)] ' =B~ + H'R™'H = Hess(J)
N——— N
accuracy con\/exity
Workshop TDMF, Orsay, 2017 42/57 ‘ 7 nematic
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If the problem is time dependent

Dynamical system: x'(tiy1) = M; i 1x" (&) +€™(t;)

siTe]
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If the problem is time dependent
Dynamical system: x'(tiy1) = M; i 1x" (&) +€™(t;)
> Direct application of the BLUE on [ty, ty]  (hyp: €™ = 0):
N -1y
x*=x"+ BT+ D> MJHIRTTHMg | > M HTR T (yi — HiMg ix®)
i=1 i=1

— 4D-Var algorithm
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If the problem is time dependent
Dynamical system: x'(tiy1) = M; i 1x" (&) +€™(t;)
> Direct application of the BLUE on [ty, ty]  (hyp: €™ = 0):
N -1 w
x*=x"+ BT+ D> MJHIRTTHMg | > M HTR T (yi — HiMg ix®)
i=1 i=1
— 4D-Var algorithm

> Sequential application of the BLUE every observation time:

e
[ ] R %
/'
o T % ®
| R
./ [ ]

~

temps

— Kalman filter

v d
&l E. Blayo - An introduction to data assimi Workshop TDMF, Orsay, 2017~ 43/57 hz&a,—




Kalman filter

Hypotheses

> &M(t;) is unbiased, with covariance matrix Q;

> e™(t;) and €™(t;) are independent (i # j)

» Unbiased observation y;, with error covariance matrix R;
| 4

€™(t;) and analysis error x?(t;) — x*(t;) are independent

Evolution of the first two moments - Kalman filter

Initialization: x(tp) = xP
P () = B
Step i: (prediction - correction, or forecast - analysis)
xf(t,-+1) = M i1 x%(t) Forecast
Pi(tis1) = My P ()M +Q;
x¥(tiy1) = x(tir1) + Kia [yir1 — Higaxf (tip1)] . BLUE
Kiyi = Pf(ti+1)H,-11 [Hi+1Pf(ti+1)H,-11 +Rip1] ™
P(tit1) = Pf(tip1) — KipaHipa PP (ti11)

UNIVERSITE]
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Kalman filter and 4D-Var

4D-Var e
.f\:\_//’."__-\
@ = )
/. .,_
W/
./ [ ]
£
Kalman filter SEMpS
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Kalman filter and 4D-Var

If H; and M; ;1 are linear, and if the model is perfect (¢™(t;) = 0), then
the Kalman filter and the variational method minimizing

N
1 1 _
J(x0) = 5 (xo —x?)TBY(xo — x?) + 5 Z(HiMo,,-xo — y,-)TR,. L(HiMg ixo — ¥i)
i=0
lead to the same solution at t = ty.

—_
lime

-
NIVERSITE] informatics #Fmatnematics
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Generalization:
Bayesian approach
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Generalization: Bayesian approach
Several types of problem:

> Filtering: p(Xn|Y1:n = y1:n)
> Forecast: p(X;|Y1.n = y1:n) (I>N)

» Smoothing: all other cases.

» p(Xi|Yin =yin) (I < N) : fixed-point smoothing
» p(Xo:n|Y1.n = y1n) ¢ fixed-interval smoothing

> ..
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Generalization: Bayesian approach

Two tools:
likekihood prior
P(Y =y|X =x) P(X
> Bayes theorem: P(X =x|Y =y) = = y,L(Y_—Xi/) —

normalisation factor
» Marginalization rule: p(X) = /p(X\ Z)p(Z)dz

And some usual hypotheses:

» £° is independent from past and present states

» ™ is dependent at most of the present state, but not from past
states

rd
[ —
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Generalization: Bayesian approach
Filtering and forecast problems can be solved by a sequential algorithm
alternating two phases:
> Analysis at time t; :

p(Xi = xi|Y1.; = y1.i) o< p(Xi = x;|Y1.i—1 = yr.i—1) p(Yi = yi|Xi = x;)

» Forecast from t; to tiy; :

p(Xit1 = xi41|Y1i = y1.i) = /P(Xi+1 = xi+1|Xi = x;) p(Xj = xi|Y1:j = y1.7) dx;

.
NIVERSITE]| informatics #Fmathematics.
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Generalization: Bayesian approach

Links with previous methods

» The Kalman filter corresponds to the general Bayesian sequential
algorithm in the case where errors are Gaussian, €™ is independent
from the present state, H and M are linear, and Xg ~ N(xb, B).

» Minimizing J in the variational approach is equivalent to looking for
the mode of p(Xo|Y1.n = y1.n) if €™ =0, Xo ~ N(x?,B), and
6? ~ N(O, R,)

v d
nfrnats Fnatnematcs
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Tens of implementations...

» Two main groups: particle filters and Ensemble Kalman Filters

» Differ mainly by their analysis step - Mainly: resampling methods
and transformation methods

Forecast Density

attme 1
Pl L)

Postetor Densiy o amr RN (CAES)-[cAb &)

ey / ) IPU"\X‘)p(x‘\Kfl>dx‘

Likelihood at time ¢

Forecast (prior distribution) p(x;| Y1)

Posterior

distribution) Observation

€ px:Ix)
Peal Yea) N

—]

UNIVERSITE]
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To go further...

P4
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Common main methodological difficulties

> Non linearities: J non quadratic / what about Kalman filter 7

» Huge dimensions [x] = O(10° — 10°): minimization of J /
management of huge matrices / approximation of covariance
matrices / computation cost

» Poorly known error statistics: choice of the norms / B,R, Q

» HPC issues: data management, code efficiency, parallelization...
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In short

» Variational methods:

> a series of approximations of the cost function, corresponding to a
series of methods: 4DVar, incremental 4DVar, 3DFGAT, 3DVar

> the more sophisticated ones (4DVar, incremental 4DVar) require the
tangent linear and adjoint models (the development of which is a
real investment). En4DVar methods try to avoid it.

» Statistical methods:

> extended Kalman filter handles (weakly) non linear problems
(requires the tangent linear model)

» reduced order Kalman filters address huge dimension problems

> a quite efficient method, addressing both problems: ensemble
Kalman filters (EnKF)

> these are so called “Gaussian filters”

> particle filters: fully Bayesian approach - still limited to low
dimension problems

-
UNIVERSITE| thematies
PN E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017  55/5 h7m/—

es




Some present research directions

> improved methods: more robust w.r.t. nonlinearities and/or non
gaussianity, or without adjoint, or less expensive...

> better management of errors (prior statistics, identification, a posteriori

validation...)
> “complex” observations (images, Lagrangian data...)
> new application domains (often leading to new methodological questions)

> definition of observing systems, sensitivity analysis...
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Two announcements

» Doctoral course “Introduction to data assimilation”
Grenoble, January 8-12, 2018

» CNA 2018: 7eme Colloque National d'Assimilation de données
Rennes, 26-28 septembre 2018
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