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Data assimilation, the science of compromises
Context characterizing a (complex) system and/or forecasting its

evolution, given several heterogeneous and uncertain
sources of information

Widely used for geophysical fluids (meteorology, oceanography,
atmospheric chemistry. . . ), but also in other numerous
domains (e.g. nuclear energy, medicine, agriculture
planning. . . )

Closely linked to inverse methods, control theory, estimation theory,
filtering. . .
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A daily example: numerical weather forecast
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Data assimilation, the science of compromises

Numerous possible aims:
I Forecast: estimation of the present state (initial condition)
I Model tuning: parameter estimation
I Inverse modeling: estimation of parameter fields
I Data analysis: re-analysis (model = interpolation operator)
I OSSE: optimization of observing systems
I . . .
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The best estimate
Several pieces of information:

I Model
I Prior (or background)

value
I Observations
I Statistics
I . . .

−→ Find the best possible estimate xa

What does the best possible estimate means?

I Estimate: deterministic value? pdf? some moments only of a pdf?
I Best: which criterion?
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Objectives for this lecture

I introduce data assimilation and its several points of view
I give an overview of the main families of methods
I point out the main difficulties and current corresponding answers

Outline
1. Data assimilation for dummies: a simple model problem
2. Generalization: linear estimation theory, variational and sequential

approaches
3. Some current challenges
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The simplest possible
model problem

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 7/57



Model problem: least squares approach
Two pieces of information on a single quantity. Which estimation for its
true value ? −→ least squares approach

Example a prior value xb = 19◦C and an observation y = 21◦C of the
(unknown) present temperature x .

I Let J(x) = 1
2
[
(x − xb)2 + (x − y)2]

I Minx J(x) −→ xa =
xb + y

2 = 20◦C

If 6= units: xb = 66.2◦F and y = 69.8◦F

I Let H(x) = 9
5 x + 32 observation operator

Let J(x) = 1
2
[
(H(x)− xb)2 + (H(x)− y)2]

Minx J(x) −→ xa = 20◦C
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Model problem: least squares approach

Drawback # 1: if observation units are inhomogeneous

xb = 19◦C and y = 69.8◦F

I J(x) = 1
2
[
(x − xb)2 + (H(x)− y)2] −→ xa = 20.53◦C

−→ adding apples and oranges !!

Drawback # 2: if observation accuracies are inhomogeneous

If xb is twice more accurate than y , one should obtain xa =
2xb + y

3 = 19.67◦C

−→ J should be J(x) = 1
2

[(
x − xb

1/2

)2

+

(
x − y

1

)2
]
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Model problem: linear statistical approach

Reformulation in a probabilistic framework:
I the goal is to find an estimator X a of the true unknown value x

I xb and y are realizations of random variables X b and Y

I One is looking for an estimator (i.e. a r.v.) X a that is
I linear: X a = αbX b + αoY (in order to be simple)
I unbiased: E (X a) = x (it seems reasonable)
I of minimal variance: Var(X a) minimum (optimal accuracy)

−→ BLUE (Best Linear Unbiased Estimator)
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Model problem: linear statistical approach

Let X b = x + εb and Y = x + εo with

Hypotheses
I E (εb) = E (εo) = 0 unbiased background and measurement device
I Var(εb) = σ2

b Var(εo) = σ2
o known accuracies

I Cov(εb, εo) = 0 independent errors

Since X a = αbX b + αoY = (αb + αo)x + αbε
b + αoε

o :
I E(X a) = (αb + αo)x + αb E(εb)︸ ︷︷ ︸

= 0

+αo E(εo)︸ ︷︷ ︸
= 0

=⇒ αb + αo = 1

I Var(X a) = E
[
(X a − x)2] = E

[
(αbε

b + αoεo)2] = α2
bσ

2
b + (1− αb)

2σ2
o

∂

∂αb
= 0 =⇒ αb =

σ2
o

σ2
b + σ2

o

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 11/57



Model problem: linear statistical approach

Let X b = x + εb and Y = x + εo with

Hypotheses
I E (εb) = E (εo) = 0 unbiased background and measurement device
I Var(εb) = σ2

b Var(εo) = σ2
o known accuracies

I Cov(εb, εo) = 0 independent errors

Since X a = αbX b + αoY = (αb + αo)x + αbε
b + αoε

o :
I E(X a) = (αb + αo)x + αb E(εb)︸ ︷︷ ︸

= 0

+αo E(εo)︸ ︷︷ ︸
= 0

=⇒ αb + αo = 1

I Var(X a) = E
[
(X a − x)2] = E

[
(αbε

b + αoεo)2] = α2
bσ

2
b + (1− αb)

2σ2
o

∂

∂αb
= 0 =⇒ αb =

σ2
o

σ2
b + σ2

o

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 11/57



Model problem: linear statistical approach

Let X b = x + εb and Y = x + εo with

Hypotheses
I E (εb) = E (εo) = 0 unbiased background and measurement device
I Var(εb) = σ2

b Var(εo) = σ2
o known accuracies

I Cov(εb, εo) = 0 independent errors

Since X a = αbX b + αoY = (αb + αo)x + αbε
b + αoε

o :
I E(X a) = (αb + αo)x + αb E(εb)︸ ︷︷ ︸

= 0

+αo E(εo)︸ ︷︷ ︸
= 0

=⇒ αb + αo = 1

I Var(X a) = E
[
(X a − x)2] = E

[
(αbε

b + αoεo)2] = α2
bσ

2
b + (1− αb)

2σ2
o

∂

∂αb
= 0 =⇒ αb =

σ2
o

σ2
b + σ2

o

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 11/57



Model problem: linear statistical approach

BLUE

X a =

1
σ2

b
X b +

1
σ2

o
Y

1
σ2

b
+

1
σ2

o

= X b +
σ2

b
σ2

b + σ2
o︸ ︷︷ ︸

gain

(Y − X b)︸ ︷︷ ︸
innovation

Its accuracy: [Var(X a)]−1 =
1
σ2

b
+

1
σ2

o
accuracies are added

I Hypotheses on the two first moments of εb, εo lead to results on the
two first moments of X a.
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Model problem: linear statistical approach

Variational equivalence
This is equivalent to the problem:

Minimize J(x) = 1
2

[
(x − xb)2

σ2
b

+
(x − y)2

σ2
o

]

Remarks:
I This answers the previous problems of sensitivity to inhomogeneous

units and insensitivity to inhomogeneous accuracies
I This gives a rationale for choosing the norm for defining J

I J ′′(xa)︸ ︷︷ ︸
convexity

=
1
σ2

b
+

1
σ2

o
= [Var(xa)]−1︸ ︷︷ ︸

accuracy
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Model problem: linear statistical approach

Geometric interpretation E (εoεb) = 0 =⇒ E (εa(Y − Xb)) = 0

yo

ea

eo

xt
eb

xb

xa

→ orthogonal projection for the scalar product < Z1,Z2 >= E(Z1Z2) for unbiased
random variables.
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Model problem: Bayesian approach

I x : a realization of a random variable X . What is the pdf p(X |Y )?

I Based on the Bayes rule:

P(X = x |Y = y) =

likekihood︷ ︸︸ ︷
P(Y = y |X = x)

prior︷ ︸︸ ︷
P(X = x)

P(Y = y)︸ ︷︷ ︸
normalisation factor

I Back to our example:
I Background X b ; N (19, σ2

b)

I Observation y = 21◦C, and Y = X + εo with εo ; N (0, σ2
o)
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Model problem: Bayesian approach

I Background X b ; N (19, σ2
b)

I Observation y = 21◦C, and Y = X + εo with εo ; N (0, σ2
o)

P(X = x |Y = 21) = P(Y = 21 |X = x)P(X = x)
P(Y = y)

I Prior: P(X = x) = P(X b = x) = 1√
2π σb

exp
(
(x − 19)2

2σ2
b

)
I Likelihood:

p(Y = 21| X = x) = p(εo = 21− x | X = x)
= p(εo = 21− x) εo is assumed independent from X

=
1√

2π σo
exp

(
− (21− x)2

2 σ2
o

)
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I Background X b ; N (19, σ2

b)

I Observation y = 21◦C, and Y = X + εo with εo ; N (0, σ2
o)

P(X = x |Y = 21) = P(Y = 21 |X = x)P(X = x)
P(Y = y)

I Hence

p(X = x) p(Y = 21| X = x) =
1

√
2πσb

exp
(
−

(x − 19)2

2 σ2
b

)
1

√
2π σo

exp
(
−

(21− x)2

2 σ2
o

)

= K exp
(
−

(x −ma)2

2σ2
a

)

with ma =

1
σ2

b
19 + 1

σ2
o

21
1
σ2

b
+ 1

σ2
o

and σ2
a =

(
1
σ2

b
+

1
σ2

o

)−1

−→ X |Y = 21 ; N (ma, σ
2
a)
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Model problem: Bayesian approach

Xb

21-eo
X	|	Y=21

Same as the BLUE because of Gaussian hypothesis
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Model problem: synthesis

Data assimilation methods are often split into 2-3 families:
I Variational methods: minimization of a cost function (least squares

approach)

I Linear statistical approach: computation of the BLUE (with
hypotheses on the first two moments)

I Bayesian approach: approximation of pdfs (with hypotheses on the pdfs)

I There are strong links between those approaches, depending on the
case (linear, Gaussian...)

Theorem
If you have understood this previous stuff, you have understood (almost)
everything on data assimilation.
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Generalization:
variational approach
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Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp
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Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

If x =


x1
x2
x3
x4

 and y =

(
an observation of x1+x2

2
an observation of x4

)

then H(x) = Hx with H =

( 1
2

1
2 0 0

0 0 0 1

)
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Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
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xn
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Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Cost function: J(x) = 1
2 ‖H(x)− y‖2 with ‖.‖ to be chosen.

Remark
(Intuitive) necessary (but not sufficient) condition for the existence of a
unique minimum:

p ≥ n
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Formalism “background value + new observations”

z =

(
xb

y

)
←− background
←− new observations

The cost function becomes:

J(x) = 1
2 ‖x− xb‖2

b︸ ︷︷ ︸
Jb

+
1
2 ‖H(x)− y‖2

o︸ ︷︷ ︸
Jo

The necessary condition for the existence of a unique minimum (p ≥ n)
is automatically fulfilled.
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If the problem is time dependent

I Observations are distributed in time: y = y(t)

I The observation cost function becomes:

Jo(x) =
1
2

N∑
i=0
‖Hi(x(ti))− y(ti)‖2

o

I There is a model describing the evolution of x: dx
dt = M(x) with

x(t = 0) = x0. Then J is often no longer minimized w.r.t. x, but
w.r.t. x0 only, or to some other parameters.

Jo(x0) =
1
2

N∑
i=0
‖Hi(x(ti))− y(ti)‖2

o =
1
2

N∑
i=0
‖Hi(M0→ti (x0))− y(ti)‖2

o
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If the problem is time dependent

J(x0) =
1
2 ‖x0 − xb

0‖2
b︸ ︷︷ ︸

background term Jb

+
1
2

N∑
i=0
‖Hi(x(ti))− y(ti)‖2

o︸ ︷︷ ︸
observation term Jo
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Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and M are linear then Jo is quadratic.

I However Jo generally does not have a unique minimum, since the
number of observations is generally less than the size of x0 (the
problem is underdetermined: p < n).

Example: let (x t
1 , x t

2) = (1, 1) and y = 1.1 an observa-
tion of 1

2 (x1 + x2).

Jo(x1, x2) =
1
2

(
x1 + x2

2
− 1.1

)2
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Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and M are linear then Jo is quadratic.
I However it generally does not have a unique minimum, since the

number of observations is generally less than the size of x0 (the
problem is underdetermined).

I Adding Jb makes the problem of minimizing J = Jo + Jb well posed.

Example: let (x t
1 , x t

2) = (1, 1) and y = 1.1 an observa-
tion of 1

2 (x1 + x2). Let (xb
1 , xb

2 ) = (0.9, 1.05)

J(x1, x2) =
1
2

(
x1 + x2

2
− 1.1

)2

︸ ︷︷ ︸
Jo

+
1
2
[
(x1 − 0.9)2 + (x2 − 1.05)2]︸ ︷︷ ︸

Jb

−→ (xa
1 , xa

2 ) = (0.94166..., 1.09166...)
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Uniqueness of the minimum ?
J(x0) = Jb(x0)+Jo(x0) =

1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

Example: the Lorenz system (1963)

dx
dt = α(y − x)

dy
dt = βx − y − xz

dz
dt = −γz + xy

Jo(y0) =
1
2

N∑
i=0

(x(ti)− xobs(ti))
2 dt
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Uniqueness of the minimum ?

J(x0) = Jb(x0)+Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi(M0→ti (x0))−y(ti)‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

I Adding Jb makes it “more quadratic” (Jb is a regularization term),
but J = Jo + Jb may however have several local minima.
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A fundamental remark before going into minimization
aspects

Once J is defined (i.e. once all the ingredients are chosen: control
variables, norms, observations. . . ), the problem is entirely defined. Hence
its solution.

The “physical” (i.e. the most important) part of varia-
tional data assimilation lies in the definition of J .

The rest of the job, i.e. minimizing J , is “only” technical work.

Implementation: 3D-VAR, 3D-FGAT, 4D-VAR, incremental 4D-VAR...
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Minimizing J

J(x) = Jb(x) + Jo(x)

=
1
2
(x− xb)T B−1(x− xb) +

1
2
(Hx− y)T R−1(Hx− y)

Optimal estimation in the linear case
xa = xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸

gain matrix

(y−Hxb)︸ ︷︷ ︸
innovation vector

J(x0) =
1
2
(x0 − xb)T B−1(x0 − xb)

+
1
2

N∑
i=1

[yi −Hi M0,i x0]
T R−1

i [yi −Hi M0,i x0]

With a linear evolution model

xa = xb +

[
B−1 +

N∑
i=1

MT
0,i HT

i R−1
i Hi M0,i

]−1 N∑
i=1

MT
0,i HT

i R−1
i (yi −Hi M0,i xb)
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Minimizing J

Given the size of n and p, it is generally impossible to handle explicitly H,
B and R. So the direct computation of the gain matrix is impossible.

� even in the linear case (for which we have an explicit expression for
xa), the computation of xa is performed using an optimization algorithm.
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Minimizing J : descent methods

Descent methods for minimizing the cost function require the knowledge
of (an estimate of) its gradient.

xk+1 = xk + αk dk

with dk =



−∇J(xk) gradient method
− [Hess(J)(xk)]

−1∇J(xk) Newton method
−Bk ∇J(xk) quasi-Newton methods (BFGS, . . . )
−∇J(xk) +

‖∇J(xk )‖2

‖∇J(xk−1)‖2 dk−1 conjugate gradient
... ...
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Getting the gradient is not obvious

It is often difficult (or even impossible) to obtain the gradient through
the computation of growth rates.

Example:{ dx(t))
dt = M(x(t)) t ∈ [0,T ]

x(t = 0) = u
with u =

 u1
...

un


J(u) = 1

2

∫ T

0
‖x(t)− xobs(t)‖2 −→ requires one model run

∇J(u) =


∂J
∂u1

(u)
...

∂J
∂un

(u)

 '
 [J(u + α e1)− J(u)] /α

...
[J(u + α en)− J(u)] /α


−→ n + 1 model runs
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Getting the gradient is not obvious

In actual large scale applications like meteorology / oceanography,
n = [u] = O(106 − 109) −→ this method cannot be used.

In such cases, the adjoint method provides an efficient way to compute
∇J .
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Example: an adjoint for the Burgers’ equation
∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 = f x ∈]0, L[, t ∈ [0,T ]

u(0, t) = ψ1(t) u(L, t) = ψ2(t) t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I uobs(x , t) an observation of u(x , t)

I Cost function: J(u0) =
1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt

Adjoint model
∂p
∂t + u ∂p

∂x + ν
∂2p
∂x2 = u − uobs x ∈]0, L[, t ∈ [0,T ]

p(0, t) = 0 p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration

Gradient of J
∇J = −p(., 0) function of x

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 37/57



Example: an adjoint for the Burgers’ equation
∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 = f x ∈]0, L[, t ∈ [0,T ]

u(0, t) = ψ1(t) u(L, t) = ψ2(t) t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I uobs(x , t) an observation of u(x , t)

I Cost function: J(u0) =
1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt

Adjoint model
∂p
∂t + u ∂p

∂x + ν
∂2p
∂x2 = u − uobs x ∈]0, L[, t ∈ [0,T ]

p(0, t) = 0 p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration

Gradient of J
∇J = −p(., 0) function of x

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 37/57



Example: an adjoint for the Burgers’ equation
∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 = f x ∈]0, L[, t ∈ [0,T ]

u(0, t) = ψ1(t) u(L, t) = ψ2(t) t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I uobs(x , t) an observation of u(x , t)

I Cost function: J(u0) =
1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt

Adjoint model
∂p
∂t + u ∂p

∂x + ν
∂2p
∂x2 = u − uobs x ∈]0, L[, t ∈ [0,T ]

p(0, t) = 0 p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration

Gradient of J
∇J = −p(., 0) function of x

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 37/57



Getting the gradient is not obvious

In actual large scale applications like meteorology / oceanography,
n = [u] = O(106 − 109) −→ this method cannot be used.

In such cases, the adjoint method provides an efficient way to compute
∇J .

It requires writing a tangent linear code and an adjoint code (beyond the
scope of this lecture):

I obeys systematic rules
I is not the most interesting task you can imagine
I there exists automatic differentiation softwares:
−→ cf http://www.autodiff.org
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Generalization:
linear statistical approach
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Generalization: linear statistical approach

To be estimated: x =

 x1
...

xn

 ∈ IRn Observations: y =

 y1
...

yp

 ∈ IRp

Linear observation operator: y ≡ H(x) = Hx

Statistical framework:
I y is a realization of a random vector Y

I One is looking for the BLUE, i.e. a r.v. Xa that is
I linear: Xa = AY with size(A) = (n, p)
I unbiased: E (Xa) = x

I of minimal variance: Var(Xa) =
n∑

i=1
Var(X a

i ) minimum

Gauss-Markov theorem: A = (HT R−1H)−1HT R−1
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Generalization: linear statistical approach
Background: Xb = x + εb and new observations: Y = H(x) + εo

Hypotheses:
I H(x) = Hx linear observation operator
I E (εb) = 0 and E (εo) = 0 unbiased background and observations
I Cov(εb, εo) = 0 independent background and observation errors
I Cov(εb) = B and Cov(εo) = R known accuracies and covariances

BLUE
Xa = Xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸

gain matrix

(Y−HXb)︸ ︷︷ ︸
innovation vector

with [Cov(Xa)]−1 = B−1 + HT R−1H accuracies are added
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Link with the variational approach
Statistical approach: BLUE

Xa = Xb + (B−1 + HT R−1H)−1HT R−1(Y−HXb)

with Cov(Xa) = (B−1 + HT R−1H)−1

Variational approach in the linear case
J(x) =

1
2 ‖x− xb‖2

b +
1
2 ‖H(x)− y‖2

o

=
1
2 (x− xb)T B−1(x− xb) +

1
2 (Hx− y)T R−1(Hx− y)

min
x∈IRn

J(x) −→ xa = xb + (B−1 + HT R−1H)−1HT R−1
(

y−Hxb
)

Same remarks as previously
I The linear statistical approach rationalizes the choice of the norms for Jo

and Jb in the variational approach.
I [Cov(Xa)]−1︸ ︷︷ ︸

accuracy
= B−1 + HT R−1H = Hess(J)︸ ︷︷ ︸

convexity
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If the problem is time dependent
Dynamical system: xt(ti+1) = Mi,i+1xt(ti) + εm(ti)

I Direct application of the BLUE on [t0, tN ] (hyp: εm = 0):

xa = xb +

[
B−1 +

N∑
i=1

MT
0,i HT

i R−1
i Hi M0,i

]−1 N∑
i=1

MT
0,i HT

i R−1
i (yi −Hi M0,i xb)

−→ 4D-Var algorithm
I Sequential application of the BLUE every observation time:

−→ Kalman filter
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Kalman filter

Hypotheses
I εm(ti ) is unbiased, with covariance matrix Qi
I εm(ti ) and εm(tj ) are independent (i 6= j)
I Unbiased observation yi , with error covariance matrix Ri
I εm(ti ) and analysis error xa(ti )− xt(ti ) are independent

Evolution of the first two moments - Kalman filter
Initialization: xa(t0) = xb

Pa(t0) = B

Step i : (prediction - correction, or forecast - analysis)
xf (ti+1) = Mi,i+1 xa(ti ) Forecast
Pf (ti+1) = Mi,i+1 Pa(ti )MT

i,i+1 + Qi

xa(ti+1) = xf (ti+1) + Ki+1
[
yi+1 −Hi+1xf (ti+1)

]
BLUE

Ki+1 = Pf (ti+1)HT
i+1
[
Hi+1Pf (ti+1)HT

i+1 + Ri+1
]−1

Pa(ti+1) = Pf (ti+1)− Ki+1Hi+1Pf (ti+1)
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Kalman filter and 4D-Var

4D-Var

Kalman filter
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Kalman filter and 4D-Var

If Hi and Mi,i+1 are linear, and if the model is perfect (εm(ti) = 0), then
the Kalman filter and the variational method minimizing

J(x0) =
1
2
(x0 − xb)T B−1(x0 − xb) +

1
2

N∑
i=0

(HiM0,i x0 − yi )
T R−1

i (HiM0,i x0 − yi )

lead to the same solution at t = tN .
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Generalization:
Bayesian approach
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Generalization: Bayesian approach

Several types of problem:

I Filtering: p(XN |Y1:N = y1:N)

I Forecast: p(Xl |Y1:N = y1:N) (l > N)

I Smoothing: all other cases.

I p(Xl |Y1:N = y1:N) (l < N) : fixed-point smoothing
I p(X0:N |Y1:N = y1:N) : fixed-interval smoothing
I ...
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Generalization: Bayesian approach

Two tools:

I Bayes theorem: P(X = x |Y = y) =

likekihood︷ ︸︸ ︷
P(Y = y |X = x)

prior︷ ︸︸ ︷
P(X = x)

P(Y = y)︸ ︷︷ ︸
normalisation factor

I Marginalization rule: p(X) =

∫
p(X| Z) p(Z) dZ

And some usual hypotheses:
I εo is independent from past and present states
I εm is dependent at most of the present state, but not from past

states
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Generalization: Bayesian approach

Filtering and forecast problems can be solved by a sequential algorithm
alternating two phases:

I Analysis at time ti :

p(Xi = xi |Y1:i = y1:i ) ∝ p(Xi = xi |Y1:i−1 = y1:i−1) p(Yi = yi |Xi = xi )

I Forecast from ti to ti+1 :

p(Xi+1 = xi+1|Y1:i = y1:i ) =

∫
p(Xi+1 = xi+1|Xi = xi ) p(Xi = xi |Y1:i = y1:i ) dxi
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Generalization: Bayesian approach

Links with previous methods

I The Kalman filter corresponds to the general Bayesian sequential
algorithm in the case where errors are Gaussian, εm is independent
from the present state, H and M are linear, and X0 ; N (xb,B).

I Minimizing J in the variational approach is equivalent to looking for
the mode of p(X0|Y1:N = y1:N) if εm = 0, X0 ; N (xb,B), and
εo

i ; N (0,Ri).
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Tens of implementations...
I Two main groups: particle filters and Ensemble Kalman Filters
I Differ mainly by their analysis step - Mainly: resampling methods

and transformation methods
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To go further...
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Common main methodological difficulties

I Non linearities: J non quadratic / what about Kalman filter ?

I Huge dimensions [x] = O(106 − 109): minimization of J /
management of huge matrices / approximation of covariance
matrices / computation cost

I Poorly known error statistics: choice of the norms / B,R,Q

I HPC issues: data management, code efficiency, parallelization...
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In short

I Variational methods:
I a series of approximations of the cost function, corresponding to a

series of methods: 4DVar, incremental 4DVar, 3DFGAT, 3DVar
I the more sophisticated ones (4DVar, incremental 4DVar) require the

tangent linear and adjoint models (the development of which is a
real investment). En4DVar methods try to avoid it.

I Statistical methods:
I extended Kalman filter handles (weakly) non linear problems

(requires the tangent linear model)
I reduced order Kalman filters address huge dimension problems
I a quite efficient method, addressing both problems: ensemble

Kalman filters (EnKF)
I these are so called “Gaussian filters”

I particle filters: fully Bayesian approach - still limited to low
dimension problems
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Some present research directions

I improved methods: more robust w.r.t. nonlinearities and/or non
gaussianity, or without adjoint, or less expensive...

I better management of errors (prior statistics, identification, a posteriori
validation...)

I “complex” observations (images, Lagrangian data...)

I new application domains (often leading to new methodological questions)

I definition of observing systems, sensitivity analysis...

E. Blayo - An introduction to data assimilation Workshop TDMF, Orsay, 2017 56/57



Two announcements

I Doctoral course “Introduction to data assimilation”
Grenoble, January 8-12, 2018

I CNA 2018: 7ème Colloque National d’Assimilation de données
Rennes, 26-28 septembre 2018
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