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Reduced-Order Modelling General context

@ Ex. from Spalart et al. (1997): wing considered at cruising flight conditions
i.e. Re = O(107). Converged solution obtained for
» about 10! grid points, about 5 x 10° time steps.
40 years for the first LES of a wing !!

@ Nearly impossible to solve numerically problems where
» either, a great number of resolution of the state equations is necessary
(continuation methods, parametric studies, optimization problems or
optimal control,. .. ),
» either a solution in real time is searched (active control in closed-loop
control for instance).

@ Objective: reduce the number of degrees of freedom.

In fluid mechanics/turbulence :

» Prandtl boundary layer equations,

RANS models (k — ¢, k — w),

» Large Eddy Simulation (LES),

Low-order dynamical system based on POD (Lumley, 1967),
Reduced-order models based on balanced, DMD and/or global modes.
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Reduced-Order l\/IodeIIing General description

Physical system | + Data

Modelling

S| ODEs| < Discretization

PDEs

Reduced-order model Simulation (fast)

S : | Low number of ODEs

Control (real time)
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Outline

© Preliminaries
@ Eigenvalue Decomposition
@ Singular Value Decomposition
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Eigenvalue Decomposition

Eigenvalue Decomposition Definition and application

@ For S € C"™" v; € C" and \; € C are eigen-vectors/-values if:
SV = VA,
with V = (v, va,...,v,) € C"™" and A = diag (A1, A2, ..., A\p).
e If S has n linearly independent eigenvectors v; then
S=VAV! ejgendecomposition of A
@ Linear dynamical systems
x=Sx.
x(t) = exp(St) x(t),
= Vexp(At) V1x(to).

» Re(Ax): growth rate (> 0) ; decay rate (< 0)
> Im()\k): frequency
» System stable if Re(A\x) <0 Vk

5/62



Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition

1.2 04
Let C={ci | |lcil, =1} and S = <o.5 0.5> '

Eigenvectors capture the directions in which vectors can grow or shrink.
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Singular Value Decomposition

Singular Value Decomposition (SVD) Definition

e CNxM: with

o U e CNxNe ynitary: UUH = UHU = Iy,
Left singular vectors: U = (uy, u2,- -+, upn,)
o V & CNexNe ypitary: WWH = vHV = |y,

Right singular vectors: V' = (vi,va,- -+, vn,)
e Y 'diagonal’ matrix

Singular values: ¥ = diag(o1,---,0p,0---,0) with p=min(N,, N;)

01>02>+>0,>0,41=0p42=---=0p=0 where r=rank(S) <p.
Y, 0 --- 0
0 0 --- 0 or 0 0
Y = . . . . ) zp: .0
0 Op

0 0 --- 0 e
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Singular Value Decomposition

SVD Example for ie. p= N,

S = UX V" where S has more columns than rows.

o1 0 --- --- 0

oy, | O - - 0
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Singular Value Decomposition

SVD Example for i.e. p=N;

S = ULV where S has more rows than columns.

01

Vi

UNt

S:( ul ... uNt uNtJrl... uNX )

0 0
H
VNt

0 0
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Singular Value Decomposition

Truncated SVD approximations Dyadic expansion

* If r = rank(S), then the SVD of S € CN<*Ne can be written as

_ 5 0 _
S=(Unxr Unx(Ne—r) ) ( *6” 0 ) ( Vvexr  Viex(Ne—r) )H

S= QNX X rzrx rMH

NtXI’

5:alulle—l—aquv2"’+~~—i—aru,v,H.

* If we truncate to k < r terms, then

Sk = UkaVkH =01 U1V1H + o9 U2V2H + - Fox UkV/(—I.
Sk is an approximation of the matrix S. How good is it?
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Singular Value Decomposition

SVD Geometric interpretation

@ Columns u;,i =1,---,r define an orthonormal basis of S
e Columns v;,i =1,---,r define an orthonormal basis of S"
@ Singular values o; indicate amplification factors

— SVD: combination of rotations and dilatation.
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Singular Value Decomposition

SVD and eigenvalue problems Properties

@ Classical POD (Lumley, 1967)
SSH — (Uzv”) (VZHUH) — Uz vHvsHUH
]
Nt
= Ux?UH = unut

= (SSH) U= UT? = UA, i.e. columns of U ev's of SSH € CNxNx
@ Snapshot POD (Sirovich, 1987)

sHs — (vz”u”) (UZVH) — vsHyHysvH
]
Nx
= vx2vyH
= VAVH
(5”5) V = VX2 = VA, ie columns of V ev's of SHS e CNexNe

° Smgular values

7 = Y M(SHS) = \M(SSH) i =1 r
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Singular Value Decomposition

Low rank approximation of S Eckart-Young theorem

VS € CN*Ne " determine S, € CN*Nt such that rank(Sy) = k < rank(S).
Criterion:

minimization of the Frobenius norm of the S- 5.
Theorem: Eckart-Young

r

IEAC)

i=k+1

min IS — X[l = IS — Sillr =
rank (X) < k

. Y
with Sk:U< Ok 8 > VH:Ululle—&-Uzuzv2H+~--+akukv,f’
Nx Nt r
and |||l =D > s2=,[> o2
i=1 j=1 i=1

. This theorem establishes a relationship between the rank k of the
approximation, and the singular values of S.
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Outline

© Data-based
@ Proper Orthogonal Decomposition
@ Dynamic Mode Decomposition
@ Cluster-based Reduced Order Model
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Proper Orthogonal Decomposition

Proper Orthogonal Decomposition Generalities

@ Also known as:

» Karhunen-Loéve decomposition: Karhunen (1946), Loéve (1945) ;

» Principal Component Analysis: Hotelling (1953) ;

» Singular Value Decomposition: Golub and Van Loan (1983).
@ Applications include:

» Random variables (Papoulis, 1965) ;
Image processing (Rosenfeld and Kak, 1982) ;
Signal analysis (Algazi and Sakrison, 1969) ;
Data compression (Andrews, Davies and Schwartz, 1967) ;
Process identification and control (Gay and Ray, 1986) ;
Optimal control (Ravindran, 2000 ; Hinze et Volkwein 2004 ;
Bergmann, 2004)

and of course in fluid mechanics

@ Introduced in turbulence by Lumley (1967)

vV vy vy VvYyy

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. Atmospheric
Turbulence and Wave Propagation, ed. A.M. Yaglom & V.I. Tatarski, pp. 166-178.
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Proper Orthogonal Decomposition

From data to Snapshot Data Matrix

Time

Simulations

o Velocity fields
e Pressure fields
e Vorticity fields

e Tracers

e PIV
e Hot-wires
e LDV

e Visualizations

Data/Snapshots
Thanks P. Schmid for the inspiration !
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Proper Orthogonal Decomposition

Data analysis as a matrix decomposition

Time Hidden Time
=
()
<
g
an
Amplitudes Dynamics

Space
Space

Data/Snapshots Modes
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Proper Orthogonal Decomposition

Model reduction: exploit the redundancy

Time Hidden Time
=
()
<
g
an
Amplitudes Dynamics

Space
Space

Low-rank approximation

Data/Snapshots Modes
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Proper Orthogonal Decomposition

Snapshot Data Matrix

Vectorial case (n. components)

u=(u1, - ,up) ; x=(x1," " ,Xxn) ; t=(t1, - ,tn,) ; Nx=nx X nc

ur(xa, tr) u(x, ) |- | ui(xa, tve—1) ur (X1, ta,)
us(x1, t1) ur(xi,t2) | -+ | wa(xi, th—1) us(x1, ty,)
Un (X1, t1) | un(xi,t2) | oo | un (s tve—1) | un (s ta,)
ur(x2, 1) u(xe,t2) |- | w(x, tn—1) u(x2, ty,)
ua(x2, t1) u(xo,t2) | - | w2, tn—1) (X2, ty,)
S= c RNXXNt
un, (X2, t1) | un (2, 82) | -+ | un. (X2, tn,—1) | Un (X2, tn,)
ur(xn,, t1) | (v, 2) | oo | oo, tve—1) | ui(s t,)
(X, t1) | ua(xng, t2) | | ua(xg, t—1) | u2(x, )
Un. (X, t1) | tn (xns t2) | oo | Un Oy tve—1) | Un (X, )
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Proper Orthogonal Decomposition

The POD basis problem In RNX Approximation framework
@ Find a k dimensional subspace VkpOD =span (®1, -, Py) s.t.
Nt
min  lu(x,t) = Meopu(x, t)[fm st [|@ullm, =1
POD
=1

or equivalently
Ne
maxZHI_IPODu(x t)Zn st [ ®klEn =1

Mpob
with Mpop: orthogonal projector on VEOD, and

k
Meopu(x, 1) = Y _ (u(x, t;), ®;(x))gn, Bj(x).
j=1

@ Solutions:

(55T> ®; = \®;, =1,k ie |VOP =y
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Proper Orthogonal Decomposition

The POD basis problem with a weighted inner product

@ Weighted inner product: W symmetric, positive definite

(1,92 = W] Wapy = (W21, W2y, )

RN«
@ Find a k dimensional subspace VEOD =span (®1, -+, Py) s.t.
N
max Y [Mpopu(x, t)[jy st [[®ulliy =1
Mpop 1
@ Solutions:

(§§T><i>,-:)\,-<i>,-, i=1,--- k

with

.§ == W1/25 and <i),' = Wl/zq),'
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Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Dynamic Mode Decomposition (DMD) The Arnoldi approach

Hypothesis 1 Schmid (2010)

JA € RN=xNx [inear operator, such that
Ui q = Auyg, Vké€ [1, N — 1] —

Uév :{u27"-7uN} :AU{V_I :A{U]_,...,UN_]_}

Objective:
Determine the eigenvectors/values of A, without knowing A.

Hypothesis 2
o {uy,...,uy_1} linearly independent.

@ Uy =cur + -+ Cy—1Un—1 + T.
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Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) The Arnoldi approach

Schmid (2010)

Combining Hyp. 1 and Hyp. 2

Similarity transformation
AUNTL = UNZIC +ref

with C the Companion matrix:

ci can be found by pseudo-inverse of UMt

0 0 c1
+
. 1 ... 0 o uN:U{V—lcj c:<U{V’1) uy
0 1 CN—-1

Reconstruction using
Eigen—elements of A \ Comp. matrix properties:

If Cyi = M\iyi then A®; = \;P;, N-1
u, = Z (I>,'/\5(71
i=1

with ®; = U{V_ly,- defined up to a constant.
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Dynamic Mode Decomposition

Dynamic Mode Decomposition (DM D) The SVD-based approach

@ Use of pseudo-inverse
o =auft = A= (u)
@ SVD of UN?
(TARETSTE 3 V/ N (U{"—l)+ = V,THuH

@ Similarity matrix of A

A=UvEful = (U[AU, = UfU) Ve =S,

o Eigen-elements of A (Tu et al., 2014)
If Sy = Aiyi then A®; ~ \;P;

with
@, =\ 10NV, Iy,
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Dynamic Mode Decomposition

DMD

How to perform a truncation?

N—1
uy = Z ®;(x)a;(tk) Complete basis.
i=1

Modes' selection

u 4 a_»
1
1
1
1
1
1

N N

Modes' selection

e POD / Balanced truncation: Modes sorted by eigenvalues.

@ DMD: Choice not obvious!
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Dynamic Mode Decomposition

Operator-based

Modes' selection

How to perform a truncation in DMD?

N—1
u, = Z <I>;)\f-‘_1 N — 1 modes with linear dynamics behavior.
i=1

Modes' selection: Choice depends on the objective.
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Dynamic Mode Decomposition

DMD Modes' selection

How to perform a truncation in DMD?

N—1
u, = Z <I>;)\f-‘_1 N — 1 modes with linear dynamics behavior.
i=1

Modes' selection: Choice depends on the objective.

Frequency / Growth rate:

)\ﬁ(—l — e(0i+iwi)tk W|th

u/’:

arg(\i) o log(|\il)

At ! At

-20 -10 0 10 20



Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Dynamic Mode Decomposition

DMD Modes' selection

How to perform a truncation in DMD?

N—1
u, = Z <I>;)\f-‘_1 N — 1 modes with linear dynamics behavior.
i=1

Modes' selection: Choice depends on the objective.

Mode amplitude:

(R3]

A= @il
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DMD

Conclusion

Dynamic Mode Decomposition

Modes' selection

How to perform a truncation in DMD?

N—1
u, = Z <I>;)\f-‘_1 N — 1 modes with linear dynamics behavior.
i=1

Modes' selection: Choice depends on the objective.

Energy contribution:
T 2 N |
azl/H@W“ dt S H
T 0 | |
-

— H@,FE o1 M“umm |

20-’. T -20 -10 0 10 20
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Dynamic Mode Decomposition

DMD Modes' selection

How to perform a truncation in DMD?

N—1
u, = Z <I>;)\f-‘_1 N — 1 modes with linear dynamics behavior.
i=1

Modes' selection: Choice depends on the objective.

Energy contribution:
T 2 N |
azl/H@W“ dt S H
T 0 | |
-

— H@,FE o1 M“umm |

20-’. T -20 -10 0 10 20

Non-orthogonality of modes = Difficulty of modes’ selection.
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Dynamic Mode Decomposition

Variants of DMD Optimized DMD
Optimized DMD: Chen et al. (2012)
N,
° uy :Z@;S\Fl%—rk with N, < N -1
i=1 N
o Find the best (®;, \;) such that [ = Z | i ||? minimal.
k=1

Minimize the residual under the linear dynamics constraint
Computationally expensive. = Analytical gradient computation.

@ Other variants:

» Low-rank and sparse DMD (Jovanovic¢ et al., 2012).
Optimal mode decomposition (Goulart et al., 2012).
Chronos-Koopman analysis (Cammilleri et al., 2013).
Compressive sampling DMD (Brunton et al., 2013).
Extended DMD (Williams et al., 2015).

v

vV v v
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Dynamic Mode Decomposition

DMD DMD vs. Optimized DMD

N. Bénard
Data: PIV data of a cylinder wake Re = 13000.

Classical DMD:
e N = 1000.
@ 25 periods of vortex shedding.

@ N, = 7 modes selected with E; criterion.

Optimized DMD:
o N = 256.
@ 6 periods of vortex shedding.
o N, =7 Optimized DMD modes.

28 /62



Introduction Preliminaries Data-based

Operator-based Perspectives Conclusion

DMD

Dynamic Mode Decomposition

DMD eigenvalues:
e

0.5

-0.5

-1 -0.5

Modes amplitude:

0.5 1

)
Re(A;)

[l

0.1

Wi

DMD vs. Optimized DMD

Frequencies/growth rates:
0.1 T T T

0.05
ol &
-0.05 -

S -0.1p
-0.15 1
021
-0.25 -
-0.3

-20 -10 0 10 20

Wi

Energy contribution:

St=0.2

g0

20 -0 0 10 20
Wi 20 /62
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Dynamic Mode Decomposition

DMD DMD vs. Optimized DMD
DMD eigenvalues: Frequencies/growth rates:
1 - 0.1 T T T
0.05 + .
0.5 1 0l &
~ -0.05
g0 1 g 01f
B 0.15 |
-05 1 0.2}
-0.25 +
1L ‘ n ‘ N 0.3 ‘ ‘ ‘ w w
-1 -0.5 0 0.5 1 -20 -10 0 10 20
Re(X;) w;
Modes amplitude: Energy contribution:

S

[l

. |
0.1 -20 -10 0 10 20

wi 30/62
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Dynamic Mode Decomposition

DMD

Classical DMD
Modes with higher
energy contribution.

4

- 3
Optimized DMD

Selected DMD modes as 2

initial condition. 1

0

1.6
1.4
1.2

0.8
0.6
0.4
0.2

-0.2

1.6
1.4
1.2

0.8
0.6
0.4
0.2

-0.2

Re(®4)

DMD vs. Optimized DMD

0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-04

0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4
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Dynamic Mode Decomposition

DMD DMD vs. Optimized DMD
u u
Re(®5) Re(®Y)
— 0.6 — 0.4
4 . | 04 4 | | 03
: 3 P . ST 31 - 0
Classical DMD .1-; - -~ SH 01
Modes with higher =2 wlgy “# Ho =2 | :} 24 o
energy contribution. 1k - 402 1k f gi
0F {§ -0.4 0F M o3
| | | | | -0.6 | | | | | 0.4
302 -1 0 1 302 1 0 1
~ X R T
u u
Re(®}) Re(®¢)
— 0.06 — 0.08
4 18 0.04 4 fj 006
3 0.02 3 0.04
Optimized DMD S S . : . - 0.02
Selected DMD modes as >2 | e 0 =2 4H o
initial condition. 1k 14 _0.02 1L 002
, -0.04
0 F {8 -0.04 0k 8 _0.06
1 | ! ! ,006 ! ! ! ! ! ,008
3 2 -1 0 1 32 -1 0 1 316
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Dynamic Mode Decomposition

DMD vs. Optimized DMD 5th snapshot reconstruction
Original snapshots: Classical DMD: Optimized DMD:
: : 2 2 2
4 ¢ 1B 15 4 = B 15 4 & 1B 15
3 s 1 3 S [ 3 4H 1
Y - h' Tl N
=2 P H o5 ».272‘__ 1105 =2 e H 05
u -
1 . R o | el q‘ 01 Mo
0 W05 ol R 05 oL 1H-05
1 1 1 1 1 _1
32 1 0 1
x
: 1
4r 1 0.5
o | 0
=2 \'. &
v 0.5
1L |
ol | -1
| | | | | -1.5
302 1 0 1
x
L%-norm error: 32/62
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k-means algorithm

Data-based

Input : {v™}, set of snapshots

Input : K, number of clusters
Output: ¢, -+ , €k, centroids
0. Initialize K means C{O),"' ,c,(<o) (random,

kmeans++);
for / + 0 to L do

1. Assignment step;
Assign each snapshot to the nearest
cluster;

o) = {vm s =g < vm—e)?

2. Update step;
Compute new means (centroids);

v

vm GCS)

(1+1) 1
c = —
e

3. Test convergence;

end

vj€l:K]}

Operator-based
Cluster-based Reduced Order Model

0.1

Perspectives Conclusion

sato
"
+ ¥ tgt*
4 ¢ +t
. f“& + 3
T 4

A
+ ++ !
* A 4 )
A it
PR
PRt T+
oS 4
gy LT
45 +h
+ F 3
AR A
e B
Iteration #0
0.1 02 03
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Cluster-based Reduced Order Model

Cluster-based Reduced-Order Modelling

Kinematics

Dynamics

o

Data

Discrete snapshots
of a limit cycle

Discretised
state space
(cluster analysis)

Construct cluster

- “' — Markov model
transition matrix

Time resolved
velocity snapshots

v (x) = v(x, )

Cluster analysis (k-means)
(Steinhaus 1956, MacQueen 1967)

K
T=30%" v -l

k=1 vmeCy

Discrete-time Markov model

Njk

with

Py, =

k 34 /62
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Cluster-based Reduced Order Model

Comparison CROM vs. POD GM

Liouville equation
[

CROM

POD GM

NSE

Op+ V- (fp) =

Cluster analysis

| Snapshot ensemble

Kinematics

A

_ m

752 Timv
m=1

Statistical analysis
Markov model

Dynamics

I+1
P

Physical

mechanisms

A

4

| Probabilistic |

]

Transition
dynamics

Linear e\.olutlon
equation for
robablhty
1str1but10n

State space
compression

POD expansion

Conclusion

Oru = F(u)

Nonlinear Galerkin
interaction projection
y
Preserves nonlinear d.
dynamics of PDE ac f(a)

an

a1

A

| Deterministic |
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Cluster-based Reduced Order Model

CROM Mixing layer

O Data
@ 2D incompressible
e Re =500

@ M = 2000 snapshots
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Cluster-based Reduced Order Model

CROM Mixing layer

© Data © Cluster analysis (K =10)
@ 2D incompressible

@ Re =500
@ M = 2000 snapshots
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Cluster-based Reduced Order Model

CROM Mixing layer

© Cluster transition matrix and simplified cluster transitions

1 5 6 78 910

0.01

@ lIdentification of two shedding regimes:
KH: Kelvin Helmoltz and VP: Vortex pairing

o Flipper cluster ¢; acts as a switch between both regimes

37/62
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Outline

@ Operator-based
@ Global stability analysis
@ Koopman analysis
@ Galerkin projection
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Global stability analysis

Global modes Generalities

@ Flow dynamics:
q=f(q). (1)
@ Hypothesis: Steady base flow Q
q(x,y,z,t) = Q(x,y,z) + €q’'(x,y,z,t) with e<1 (2)
@ Substitute (1) into (2), expand in Taylor series, at order 1
q' = Aq’ with A Jacobian matrix of f at g

o Different levels of expansion for q(x, y, z, t)

Q(x,y,z) +e{q(x,y,z) exp[—)Qt] + c.c.} 3D global modes
Q(x,y) +e{q(x,y)exp[y(Bz — Qt)] + c.c.} 2D global modes
Q(y) +e{g(y)expy(ax+ Bz — Qt)] + cc.} Local stability

@ 3D global modes leads to generalized eigenvalue problem

-804 = Aq

39/62
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Global stability analysis

2D global modes Incompressible Navier-Stokes (1)
@ Incompressible Navier-Stokes u=(u,v,w)
1
: - _ ~ A
oru+ (u-V)u Vp+Re u
V. -u=0,
@ Base flow equations Q(x,y)=(U,P)=(U,V,0,P)
1
. =-VP+ —A
(Uu-v)u VP + e u
V.-U=0.
@ Perturbation equations q'(x,y,z,t) = (J,v,w,p)
1
o'+ (v - V)U+(U-V)u' =-Vp' + %Au’

V-u' =0.

@ Hypothesis: Base flow homogeneous in the transverse direction

1
q(x,y,z,t) = > {(0,0,w,p)(x,y)exp )8z + ot] + c.c.} witho € C

40/62
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Global stability analysis

2D global modes Incompressible Navier-Stokes (2)
with g = (a,p) = (a,0,yw,p) global mode.
D—-C—-0cU -0, U 0 —0x
A -0V D-C-9,V 0 -0,
0 0 D-C p
Ox 0y B 0
and
1000
01 00
B= 0010
0 00O
where
1
D= T (8Xz +0y2 — 52) viscous diffusion of perturbation
C=Uox+ Vo, advection by base flow

41/62
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Koopman analysis

Koopman operator (Koopman, 1931)

e Nonlinear dynamical system f : M — M (M finite dimensional)
X1 = F(Xk)
@ Let g : M — R be a scalar observable. K¢ Koopman operator
Krg(Xi) = g(F(X()) = g o F(Xy) = g(Xi41).
@ Kr: linear operator of infinite dimension
Ke(ong1(X k) + a2g2(X«)) = 01Krg1(X k) + 02Krg2(X k)
@ Eigenfunctions and eigenvalues

Kr oD (x,) = 2Dl (X))

o Let define | z) = ¢U)(X) | nonlinear change of coordinates. We have:

29, = 60(Xii1) = $O(F(X4)) = KrdD) (k) = ADp0)(2,) = A0 20

Dynamics linear in zU) ; Cf may have enough eigenfunctions !!!
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Koopman analysis

Koopman operator Connection with DMD

@ Let g : M — RP be a vectorial observable. We have:

—+00
Xy = Zgbj(k’k)kj with  k;j : Koopman modes
j=1
@ We can show that:
+o0
Z¢J(Xk J = ZIC 451 (X1)k J = Z)‘f_lﬁbj(xl)kj
Jj=1

= Koopman modes can be obtained by DMD algorithm.
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Galerkin projection

Reduced-Order l\/lodelling Dynamical systems S and S
e Full-order model (FOM)
_ {X(t) = f(X(t),c(t)), where X eR™
Y(t) =g (X(t),c(t)), where Y ecR™.
@ Reduced-order model (ROM)

2(t)=F(X(t),c(t)), where X cR™ with

57(t): < (t), c(t ) where Y € R™.

S:

@ Requirements for deriving S
© low approximation error Vc i.e.

1Y =Y <ex|c] with € a tolerance

— Need computable error bound estimates!!
@ stability and passivity (no generation of energy) preserved ;
© procedure of model reduction numerically stable and efficient ;
@ if possible, automatic generation of models.
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Galerkin projection

Reduced-Order Modelling Projection method (Petrov-Galerkin)

@ We introduce W; and W5, two biorthogonal matrices of size R"** ",
such that W2HQW1 = Ip, | where Q € R™*"¥ is the weight matrix.
e We consider: i) the projection X = le:' and ii) 57 ~y.
@ Algorithm:
QO X~WX

R = WiX(t) - f (W (1), c(0)),
Y(t) =g (le?(t),c(t)).

@ Petrov-Galerkin projection: WZHQ’R, =0, fe

5. {m = F(X(2), (1) = WJ'Q F(MX (1), (1)),
V() = B(R(2). (1)) = g(WA X(2). (1)),

For Wy # Wh: oblique projection.
For Wi = Wa: Galerkin projection (orthogonal projection).
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Galerkin projection

Reduced-Order l\/lodelling Projection method: choice of Wy and W,

> For linear systems, various projection methods exist:

© Krylov methods (Gugercin et Antoulas, 2006)
proj. on the Krylov subspace of the controllability gramian: identification of
the moments of the transfer function.

@ Balanced realizations
proj. on dominant modes of the controllability and observability gramians

» Balanced Truncation (Moore, 1981) ; Balanced POD (Rowley, 2005)

© Instability methods
proj. on global modes and adjoint global modes (Sipp, 2008)

> For non-linear systems: a posteriori methods

© Proper Orthogonal Decomposition or POD (Lumley 1967 ; Sirovich

1987)
proj. on the subspace determined with snapshots of the system.

@ Dynamic Mode Decomposition (Schmid, 2010)
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Galerkin projection

POD Reduced-order model Generalities
> Boundary control of the Navier-Stokes equations (xeQand t>0)
ou
=f(u P
5; = f(u,P)
u(x, t=0)=uwu(x) (I.C.)

(
u(x, t) =~(t)b(x) forxerl. (B.C.)
(x, t)=h(x) forxel\l. (B.C.).
where 1
flu,P)=—(u-V)u—-Vp+ R—eAu.
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Galerkin projection

POD Reduced-order model Choice of the decomposition variable
> B.C. independent of time, i.e. u(x, t) = ugc(x) on T

o U ={u(x, t1), -, u(x, tn,)}
® um(x): ensemble average of U (time average)

1 &
um(x) = 1> ulx, 1)
k=1
o U ={u(x, t1) — um(x), -, u(x, tn,) — um(x)}
e u(x, t) — um(x) is solenoidal

upop(x, t) = u(x, t) — um(x) verify homogeneous B.C. i.e.

Qi(x)‘xer =0/

()
=
x
G

I

S
3
)

+
v
©
&
x
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Galerkin projection

POD Reduced-order model Choice of the decomposition variable

> B.C. dependent of time, i.e. u(x, t) = ugc(x,t) on T

o U ={u(x, t1), -, u(x, tn,)}
® um(x): ensemble average of U (time average)

o U =
{u(x, t1)=y(t1)uc(x) —um(x), -, u(x, tn,) =v(tn,)tc(X) —tm(x)}
Npop
o |u(x, t) = um(x) + v(t)uc(x) + Z ai(t)®(x) | where
i=1

uc(x) =b(x) onTl.and
on T\ T..

S
a
—
x
~
Il
o

@ upop(x, t) = u(x, t) — um(x) — y(t)uc(x) verify homogeneous B.C.
i.e.

®;(x)[er =0}
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Galerkin projection

POD Reduced-order model Galerkin projection (1)

o Galerkin Projection of the Navier-Stokes equations onto the POD basis:

Ju ou 1 i
<<I),', m_—f(u7P))Q— (‘I),', at—‘r(U-V)U“er—ReAU)Q—O Vi

ou 1
&,y (u-V = (®;, -Vp+—A
:>< 8t+(u )u>Q < p+Re u)Q

@ Integration by parts (Green formula):

ou B N AT
(@,mﬂu-V)u)Q—(p,V-@,)ﬂ —((vee) vou)

i+ o (Vo u)®]

with  [a]r :/a-ndx and (j, E)Q :/A:BdQ:Z/ AjiBji dx.
r Q — Ja
I?J
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Galerkin projection

POD Reduced-order model Galerkin projection (2)

o We decompose the velocity fields on Npop modes:

Npob

u(x, t) = um(x) + (t) uc(x) + Y ak(t)@i(x).

k=1
o Dynamical system with Ng, (< Npop) modes kept:

d ar (t) Ngal gal gal
d’t =A; —I—ZBUaJ +ZZC’J’<3J ay(t
Jj=1 j=1 k=1

gal

+ D; 7_’_ & —i—z}'uaj (t) | v+ 67

3i(0) = (u(x, 0) — um(x) — 7(0) uc(x), ®i(x))a-

Ai, Bjj, Cij, Dj, &;, Fijj et G; depend only on @, um,, uc and Re.
@ Dynamics predicted by the POD ROM may be not sufficiently accurate
= need of identification techniques (Data Assimilation)
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Galerkin projection

POD Reduced-order model Coefficients for v = 0

1 1
Aj=— (‘I’,’, (um : V) um)Q - Rie (V@i, VUm)Q + Rie [(I)i VUm]r

BU = — (@,‘, (Um . V) ¢J)Q - (¢i7 (¢J : V) um)Q
1 1
“Re (V®;, V@j)Q + Re [P/ V‘I)j]r

Cik = — (@i, (®;- V) ®y)q
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Galerkin projection

POD Reduced-order model Coefficients for 7 # 0

D; = — (®j, uc)q

Ei=—(®,(Um-V)uc)g — (®i,(uc - V) um)q
1

1
Re (V®;,Vuc)g + Re [®; Vuc]r

Fij=— (@, ((I)j - V) UC)Q — (@i, (uc - V) q)j)Q

Gi=—(®i,(uc-V)uc)g
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Galerkin projection

Cylinder wake flow Configuration

@ Two dimensional flow around a circular cylinder at Re = 200
@ Viscous, incompressible and Newtonian fluid
e Cylinder oscillation with a tangential velocity 7(t)

~(t) = Yr_ Asin(27Strt)

Uso

Lsup

Liny
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Galerkin projection

POD of the controlled wake flow (v #0)  A=2and Str =0,5

@ 361 snapshots taken uniformly over T =18

Npop
@ Energetic Content: Ex = g A / E Ai
i=1
Objective: Determine POD truncat/on with 99% of relative energy

10’;““I““I ““““ LI B 11:““I““I““““I““I““I““,
10";— SN POD cut-off scale é 15_ ead N B

F N\ ] 09 / .

10" \'\ / E F ) i

E .y E o8 E

B 102;— \\\ ; B 07; | N '
F Ba E Eo o ]

§ \ ] osf | E

103; LEY E o/ ]

F N E osf | E

L S d vl ]

10 ;— ; 04 L3 E
10—57\\\\5\\\\:1\\\\ ““é““l‘o““l‘z““;A 037““5““2““ HH&‘Z””l‘O””l‘ZHH;A

POD index Number of POD modes kept

Nga = arg mkin Ey such that En, >99% = N =6
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Galerkin projection

POD of the controlled wake flow (v # 0) Velocity modes

Fig. . Iso-values of the first 6 POD modes
~(t) = Asin(2wStrt) with A =2 and Stf = 0,5.
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Galerkin projection

POD of the controlled wake flow (y # 0)integration and calibration

Reconstruction errors of POD ROM =- time amplification of the modes
‘ ‘ > Reasons:

@ Extraction of large scale
structures carrying energy

ﬂ A‘v " "'4
a@&é@” I
vV |V / v

A

v«& \\ ‘A‘0
M&v’ \

@ Main of the dissipation
contained in the small

/

R
M (Y

af structures
1.sf
_ZO’\ —_— [ 1 DSO'UUO”S
time
Fig. I Time evolution of the first 6 POD modes o Identification methOdr Data
(A=2 and Sty = 0,5). Assimilation for instance

——— projection (Navier-Stokes) : a(t)
——— prediction before identification (POD ROM)
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Outline

© Perspectives
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Perspectives Other techniques

For linear models

» Balanced Truncation
» Balanced Proper Orthogonal Decomposition (BPOD)
» Eigensystem Realization Algorithm (ERA)

@ Non linear dimensionality reduction methods

» Kernel Principal Component Analysis (K-PCA)
» MultiDimensional Scaling (MDS)

> Isomap

» Locally Linear Embedding (LLE)

High-Order Principal Component Analysis (HO-PCA)

Resolvent analysis
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Outline

@ Conclusion
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Machine Learning Sub categories

© Supervised Learning
Learn a mapping from inputs x to outputs y given a labeled set
Dsi = {xi,yi}1;. T .
» Classification or pattern recognition i ’
» Regression Genetic Programming

© Unsupervised Learning
Given only inputs Dy, = {x;}/¥,, discover “interesting
patterns”
» Clustering: CROM
» Dimensionality Reduction: PCA, POD, DMD

© Reinforcement Learning
How to take actions in an environment so as
to maximize a cumulative reward.
Discretized and continuous RL

internal state reward

observation 61/62
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