Introduction à la réduction de modèles en Dynamique des Fluides

Laurent Cordier & Lionel Mathelin

TDMF, November 29, 2017, Orsay

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Reduced-	Order Mod	lelling		Gener	al context
• Ex. fro <i>i.e.</i> Re	m Spalart et al $= \mathcal{O}(10^7)$. Cor	. <mark>(1997)</mark> : win nverged soluti	g considered at on obtained for	cruising flight co	onditions
► a	bout 10 ¹¹ grid µ 40 ye	points, ears for the fir	st LES of a wing	about 5 $ imes$ 10 ⁶ ti g !!	ime steps.
 Nearly ei (o ei co 	impossible to so ther, a great nu- continuation me ptimal control,. ther a solution pontrol for instan	olve numerica umber of resol ethods, param), in real time is nce).	lly problems whe ution of the stat etric studies, opt searched (activ	ere te equations is n timization proble e control in clos	ecessary ems or ed-loop
● Object ▶ P ▶ R	ive: reduce the In fluid mechan randtl boundary ANS models (<i>k</i>	number of denoted the denoted of th	grees of freedom e : ons,	1.	

- Large Eddy Simulation (LES),
- ► Low-order dynamical system based on POD (Lumley, 1967),
- ► Reduced-order models based on balanced, DMD and/or global modes.

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Outling					
Outime					

Preliminaries

- Eigenvalue Decomposition
- Singular Value Decomposition
- 3 Data-based
 - Proper Orthogonal Decomposition
 - Dynamic Mode Decomposition
 - Cluster-based Reduced Order Model

Operator-based

- Global stability analysis
- Koopman analysis
- Galerkin projection

Perspectives

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Eigenvalue Decompo	osition Singular	Value Decomposition			
Outline					

Introduction

Preliminaries

- Eigenvalue Decomposition
- Singular Value Decomposition

3 Data-based

- Proper Orthogonal Decomposition
- Dynamic Mode Decomposition
- Cluster-based Reduced Order Model

Operator-based

- Global stability analysis
- Koopman analysis
- Galerkin projection

B Perspectives

6 Conclusion

• For $S \in \mathbb{C}^{n \times n}$, $v_i \in \mathbb{C}^n$ and $\lambda_i \in \mathbb{C}$ are eigen-vectors/-values if:

 $SV = V\Lambda$,

with $V = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \in \mathbb{C}^{n \times n}$ and $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. • If S has n linearly independent eigenvectors \mathbf{v}_i then

 $S = V \Lambda V^{-1}$ eigendecomposition of A

• Linear dynamical systems

$$\dot{\mathbf{x}} = S \mathbf{x}$$
.

$$\begin{aligned} \mathbf{x}(t) &= \exp(S t) \mathbf{x}(t_0), \\ &= V \exp(\Lambda t) V^{-1} \mathbf{x}(t_0). \end{aligned}$$

- $\operatorname{Re}(\lambda_k)$: growth rate (> 0) ; decay rate (< 0)
- $Im(\lambda_k)$: frequency
- System stable if $\operatorname{Re}(\lambda_k) < 0 \quad \forall k$

Eigenvectors capture the directions in which vectors can grow or shrink.

 $S = U \Sigma V^H$ where S has more columns than rows.

 $S = U \Sigma V^H$ where S has more rows than columns.

 \star If $r = \operatorname{rank}(S)$, then the SVD of $S \in \mathbb{C}^{N_x imes N_t}$ can be written as

$$S = \begin{pmatrix} \underline{U}_{N_{x} \times r} & \overline{U}_{N_{x} \times (N_{t} - r)} \end{pmatrix} \begin{pmatrix} \underline{\Sigma}_{r \times r} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \underline{V}_{N_{t} \times r} & \overline{V}_{N_{t} \times (N_{t} - r)} \end{pmatrix}^{H}$$
$$S = \underline{U}_{N_{x} \times r} \underline{\Sigma}_{r \times r} \underline{V}_{N_{t} \times r}^{H}$$

$$S = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^H + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^H + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^H.$$

 \star If we truncate to k < r terms, then

$$S_k = U_k \Sigma_k V_k^H = \sigma_1 \, \boldsymbol{u}_1 \boldsymbol{v}_1^H + \sigma_2 \, \boldsymbol{u}_2 \boldsymbol{v}_2^H + \dots + \sigma_k \, \boldsymbol{u}_k \boldsymbol{v}_k^H.$$

 S_k is an approximation of the matrix S. How good is it?

 \implies SVD: combination of rotations and dilatation.

 $\implies (S^HS) \ V = V\Sigma^2 = V\Lambda, \ i.e. \text{ columns of } V \text{ ev's of } S^HS \in \mathbb{C}^{N_t \times N_t}$ • Singular values

$$\sigma_i = \sqrt{\lambda_i(S^H S)} = \sqrt{\lambda_i(SS^H)} \quad i = 1, \cdots, r$$

Theorem: Eckart-Young

$$\min_{\text{rank}(X) \le k} \|S - X\|_F = \|S - S_k\|_F = \sqrt{\sum_{i=k+1}^r \sigma_i^2(S)}$$

with
$$S_k = U \begin{pmatrix} \Sigma_k & 0 \\ 0 & 0 \end{pmatrix} V^H = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^H + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^H + \dots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^H$$

and $||S||_F = \sqrt{\sum_{i=1}^{N_x} \sum_{j=1}^{N_t} s_{ij}^2} = \sqrt{\sum_{i=1}^r \sigma_i^2}.$

<u>Remark</u> : This theorem establishes a relationship between the rank k of the approximation, and the singular values of S.

Outline

Introduction

Preliminaries

- Eigenvalue Decomposition
- Singular Value Decomposition
- 3 Data-based
 - Proper Orthogonal Decomposition
 - Dynamic Mode Decomposition
 - Cluster-based Reduced Order Model

Operator-based

- Global stability analysis
- Koopman analysis
- Galerkin projection

• Perspectives

6 Conclusion

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model Proper Orthogonal Decomposition Generalities

- Also known as:
 - Karhunen-Loève decomposition: Karhunen (1946), Loève (1945) ;
 - Principal Component Analysis: Hotelling (1953) ;
 - Singular Value Decomposition: Golub and Van Loan (1983).
- Applications include:
 - Random variables (Papoulis, 1965) ;
 - Image processing (Rosenfeld and Kak, 1982) ;
 - Signal analysis (Algazi and Sakrison, 1969);
 - Data compression (Andrews, Davies and Schwartz, 1967);
 - Process identification and control (Gay and Ray, 1986);
 - Optimal control (Ravindran, 2000 ; Hinze et Volkwein 2004 ; Bergmann, 2004)

and of course in fluid mechanics

• Introduced in turbulence by Lumley (1967)

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. *Atmospheric Turbulence and Wave Propagation*, ed. A.M. Yaglom & V.I. Tatarski, pp. 166-178.

Data/Snapshots

Thanks P. Schmid for the inspiration !

$$S = \begin{pmatrix} D_{training} & D_{training} & D_{training} & Operator-based & Perspectives & Conclusion Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model \\ \hline Snapshot Data Matrix & Vectorial case (n_c components) \\ u = (u_1, \dots, u_{n_c}) ; x = (x_1, \dots, x_{n_x}) ; t = (t_1, \dots, t_{N_t}) ; N_x = n_x \times n_c \\ \begin{pmatrix} u_1(x_1, t_1) & u_1(x_1, t_2) & \cdots & u_1(x_1, t_{N_t-1}) & u_1(x_1, t_{N_t}) \\ u_2(x_1, t_1) & u_2(x_1, t_2) & \cdots & u_2(x_1, t_{N_t-1}) & u_2(x_1, t_{N_t}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n_c}(x_1, t_1) & u_{n_c}(x_1, t_2) & \cdots & u_{n_c}(x_1, t_{N_t-1}) & u_{n_c}(x_1, t_{N_t}) \\ u_2(x_2, t_1) & u_1(x_2, t_2) & \cdots & u_{n_c}(x_1, t_{N_t-1}) & u_{n_c}(x_1, t_{N_t}) \\ u_2(x_2, t_1) & u_2(x_2, t_2) & \cdots & u_{n_c}(x_2, t_{N_t-1}) & u_{2}(x_2, t_{N_t}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n_c}(x_2, t_1) & u_{n_c}(x_2, t_2) & \cdots & u_{n_c}(x_2, t_{N_t-1}) & u_{n_c}(x_2, t_{N_t}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n_c}(x_2, t_1) & u_{1}(x_{N_x}, t_2) & \cdots & u_{1}(x_{N_x}, t_{N_t-1}) & u_{1}(x_{N_x}, t_{N_t}) \\ u_2(x_{N_x}, t_1) & u_2(x_{N_x}, t_2) & \cdots & u_{2}(x_{N_x}, t_{N_t-1}) & u_{2}(x_{N_x}, t_{N_t}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n_c}(x_{N_x}, t_1) & u_{n_c}(x_{N_x}, t_2) & \cdots & u_{n_c}(x_{N_x}, t_{N_t-1}) & u_{n_c}(x_{N_x}, t_{N_t}) \end{pmatrix} \in \mathbb{R}^{N_x \times N_x}$$

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion
Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model
The POD basis problem in
$$\mathbb{R}^{N_x}$$
 Approximation framework
• Find a k dimensional subspace $V_k^{\text{POD}} = \text{span} (\Phi_1, \dots, \Phi_k)$ s.t.
 $\min_{\Pi_{\text{POD}}} \sum_{i=1}^{N_t} \| u(x, t_i) - \Pi_{\text{POD}} u(x, t_i) \|_{\mathbb{R}^{N_x}}^2$ s.t. $\| \Phi_k \|_{\mathbb{R}^{N_x}}^2 = 1$
or equivalently
 $\max_{\Pi_{\text{POD}}} \sum_{i=1}^{N_t} \| \Pi_{\text{POD}} u(x, t_i) \|_{\mathbb{R}^{N_x}}^2$ s.t. $\| \Phi_k \|_{\mathbb{R}^{N_x}}^2 = 1$
with Π_{POD} : orthogonal projector on V_k^{POD} , and
 k

$$\Pi_{\text{POD}}\boldsymbol{u}(\boldsymbol{x},t_i) = \sum_{j=1} \left(\boldsymbol{u}(\boldsymbol{x},t_i), \boldsymbol{\Phi}_j(\boldsymbol{x})\right)_{\mathbb{R}^{N_x}} \boldsymbol{\Phi}_j(\boldsymbol{x}).$$

• Solutions:

$$(SS^{\mathsf{T}}) \Phi_i = \lambda_i \Phi_i, \quad i = 1, \cdots, k, \text{ i.e. } V_k^{\mathsf{POD}} \equiv U_k$$

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

The POD basis problem with a weighted inner product

• Weighted inner product: W symmetric, positive definite

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_1,\psi_2 \end{pmatrix}_W &= \psi_1^\mathsf{T} W \psi_2 = \left(W^{1/2} \psi_1, W^{1/2} \psi_2
ight)_{\mathbb{R}^{N_2}} \end{aligned}$$

• Find a k dimensional subspace $V_k^{\mathsf{POD}} = \mathsf{span}\left(\Phi_1, \cdots, \Phi_k\right)$ s.t.

$$\max_{\Pi_{POD}} \sum_{i=1}^{N_t} \|\Pi_{POD} \boldsymbol{u}(\boldsymbol{x}, t_i)\|_W^2 \qquad s.t. \quad \|\boldsymbol{\Phi}_k\|_W^2 = 1$$

• Solutions:

$$\left(\tilde{S}\tilde{S}^{\mathsf{T}}\right)\tilde{\Phi}_{i}=\lambda_{i}\tilde{\Phi}_{i}, \quad i=1,\cdots,k$$

with

$$\widetilde{S} = W^{1/2}S$$
 and $\widetilde{\Phi}_i = W^{1/2}\Phi_i$

Combining Hyp. 1 and Hyp. 2

$$AU_1^{N-1} = U_1^{N-1}C + re_{N-1}^T$$

Similarity transformation

with C the Companion matrix:

$$C = \begin{pmatrix} 0 & \dots & 0 & c_{1} \\ 1 & \dots & 0 & c_{2} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & c_{N-1} \end{pmatrix}$$

 c_i can be found by pseudo-inverse of U_1^{N-1} .

$$oldsymbol{u}_N = U_1^{N-1}oldsymbol{c} \Rightarrow oldsymbol{c} = ig(U_1^{N-1}ig)^+oldsymbol{u}_N$$

Reconstruction using

Comp. matrix properties:

$$\boxed{\boldsymbol{u}_k = \sum_{i=1}^{N-1} \boldsymbol{\Phi}_i \boldsymbol{\lambda}_i^{k-1}}$$

Eigen-elements of A If $C \mathbf{y}_i = \lambda_i \mathbf{y}_i$ then $A \mathbf{\Phi}_i \approx \lambda_i \mathbf{\Phi}_i$,

with $\Phi_i = U_1^{N-1} y_i$ defined up to a constant.

• Use of pseudo-inverse

$$U_2^N = AU_1^{N-1} \implies A = U_2^N \left(U_1^{N-1}\right)^+$$

• SVD of U_1^{N-1}

$$U_1^{N-1} = U_r \Sigma_r V_r^H \implies \left(U_1^{N-1} \right)^+ = V_r \Sigma_r^+ U_r^H$$

• Similarity matrix of A

• Eigen-elements of A (Tu et al., 2014)

If
$$S_r \mathbf{y}_i = \lambda_i \mathbf{y}_i$$
 then $A \mathbf{\Phi}_i \approx \lambda_i \mathbf{\Phi}_i$

with

$$\boldsymbol{\Phi}_i = \lambda_i^{-1} U_2^N V_r \boldsymbol{\Sigma}_r^+ \boldsymbol{y}_i$$

How to perform a truncation?

$$oldsymbol{u}_k = \sum_{i=1}^{N-1} oldsymbol{\Phi}_i(oldsymbol{x}) a_i(t_k)$$
 Complete basis.

Modes' selection

- POD / Balanced truncation: Modes sorted by eigenvalues.
- DMD: Choice not obvious!

$$oldsymbol{u}_k = \sum_{i=1}^{N-1} oldsymbol{\Phi}_i \lambda_i^{k-1}$$
 $N-1$ modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

$$oldsymbol{u}_k = \sum_{i=1}^{N-1} oldsymbol{\Phi}_i \lambda_i^{k-1}$$
 $N-1$ modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

$$\frac{\text{Frequency / Growth rate:}}{\lambda_i^{k-1} = e^{(\sigma_i + i\omega_i)t_k} \text{ with}}$$
$$\omega_i = \frac{\arg(\lambda_i)}{\Delta t} \text{ ; } \sigma_i = \frac{\log(|\lambda_i|)}{\Delta t}$$

$$oldsymbol{u}_k = \sum_{i=1}^{N-1} oldsymbol{\Phi}_i \lambda_i^{k-1}$$
 $N-1$ modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Mode amplitude:

$$\boldsymbol{A}_i = \|\boldsymbol{\Phi}_i\|^2$$

$$oldsymbol{u}_k = \sum_{i=1}^{N-1} oldsymbol{\Phi}_i \lambda_i^{k-1}$$
 $N-1$ modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Energy contribution:

$$\frac{\mathsf{E}_{i}}{\mathsf{E}_{i}} = \frac{1}{T} \int_{0}^{T} \left\| \Phi_{i} \lambda_{i}^{t/\Delta t} \right\|^{2} \mathrm{d}t$$

$$= \left\| \Phi_{i} \right\|^{2} \frac{e^{2\sigma_{i}T} - 1}{2\sigma_{i}T}$$

$$oldsymbol{u}_k = \sum_{i=1}^{N-1} oldsymbol{\Phi}_i \lambda_i^{k-1}$$
 $N-1$ modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Non-orthogonality of modes \implies Difficulty of modes' selection.

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model Conclusion

Variants of DMD

Optimized DMD

Optimized DMD: Chen et al. (2012)

•
$$\boldsymbol{u}_k = \sum_{i=1}^{N_a} \hat{\boldsymbol{\Phi}}_i \hat{\lambda}_i^{k-1} + \boldsymbol{r}_k$$
 with $N_a \ll N - 1$
• Find the best $(\hat{\boldsymbol{\Phi}}_i, \hat{\lambda}_i)$ such that $\Gamma = \sum_{k=1}^N \|\boldsymbol{r}_k\|^2$ minimal.

Minimize the residual under the linear dynamics constraint Computationally expensive. \Rightarrow Analytical gradient computation.

- Other variants:
 - Low-rank and sparse DMD (Jovanović et al., 2012).
 - Optimal mode decomposition (Goulart et al., 2012).
 - Chronos-Koopman analysis (Cammilleri et al., 2013).
 - Compressive sampling DMD (Brunton et al., 2013).
 - Extended DMD (Williams et al., 2015).

N. Bénard

Data: PIV data of a cylinder wake Re = 13000.

Classical DMD:

- N = 1000.
- 25 periods of vortex shedding.
- $N_a = 7$ modes selected with E_i criterion.

Optimized DMD:

- *N* = 256.
- 6 periods of vortex shedding.
- $N_a = 7$ Optimized DMD modes.

DMD vs. Optimized DMD

Frequencies/growth rates:

Modes amplitude:

Energy contribution:

DMD

DMD vs. Optimized DMD

Frequencies/growth rates:

Modes amplitude:

Energy contribution:

Classical DMD Modes with higher energy contribution.

Optimized DMD Selected DMD modes as initial condition.

DMD vs. Optimized DMD

k-means algorithm

- Input : { v^m }, set of snapshots Input : K, number of clusters Output: c_1, \dots, c_K , centroids
- 0. Initialize K means $\boldsymbol{c}_1^{(0)}, \cdots, \boldsymbol{c}_K^{(0)}$ (random, kmeans++); for $l \leftarrow 0$ to L do
 - 1. Assignment step;

Assign each snapshot to the nearest cluster;

$$\mathcal{C}_k^{(l)} = \left\{ \bm{v}^m : \|\bm{v}^m - \bm{c}_k^{(l)}\|^2 \le \|\bm{v}^m - \bm{c}_j^{(l)}\|^2 \quad \forall j \in [1:K] \right\}$$

2. Update step;

Compute new means (centroids);

$$oldsymbol{c}_k^{(l+1)} = rac{1}{|\mathcal{C}_k^{(l)}|} \sum_{oldsymbol{v}^m \in \mathcal{C}_k^{(l)}} oldsymbol{v}^m$$

3. Test convergence;

Data-based

Operator-based

Perspectives Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Conclusion

Cluster-based Reduced-Order Modelling

 Introduction
 Preliminaries
 Data-based
 Operator-based
 Perspectives
 Conclusion

 Proper Orthogonal Decomposition
 Dynamic Mode Decomposition
 Cluster-based Reduced Order Model
 Conclusion

Comparison CROM vs. POD GM

Introduction	Preliminaries	Data-based	Oper	ator-based	Perspectives	Conclusion
Proper Orthogonal	Decomposition	Dynamic Mode De	composition	Cluster-based	Reduced Order Model	
CROM					Mi	xing layer

💶 Data

- 2D incompressible
- *Re* = 500
- M = 2000 snapshots

Snapshot POD modes

- 💶 Data
 - 2D incompressible
 - *Re* = 500
 - M = 2000 snapshots

Snapshot POD modes

Cluster transition matrix and simplified cluster transitions

- Identification of two shedding regimes:
 KH: Kelvin Helmoltz and VP: Vortex pairing
- Flipper cluster c_1 acts as a switch between both regimes

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Global stability ar	nalysis Koopman an	alysis Galerkin proje	ection		
Outline					

Introduction

2 Preliminaries

- Eigenvalue Decomposition
- Singular Value Decomposition
- 3 Data-based
 - Proper Orthogonal Decomposition
 - Dynamic Mode Decomposition
 - Cluster-based Reduced Order Model

Operator-based

- Global stability analysis
- Koopman analysis
- Galerkin projection

Perspectives

Conclusion

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Global stability an	alysis Koopman an	alysis Galerkin projec	tion		
Global m	odes			(Generalities

• Flow dynamics:

$$\dot{\boldsymbol{q}} = \boldsymbol{f}(\boldsymbol{q}). \tag{1}$$

• Hypothesis: Steady base flow Q

$$\boldsymbol{q}(x,y,z,t) = \boldsymbol{Q}(x,y,z) + \epsilon \boldsymbol{q'}(x,y,z,t) \quad \text{with} \quad \epsilon \ll 1$$
 (2)

• Substitute (1) into (2), expand in Taylor series, at order 1

 $\dot{\boldsymbol{q}}' = A \boldsymbol{q}'$ with A Jacobian matrix of \boldsymbol{f} at \boldsymbol{q}

- Different levels of expansion for $\boldsymbol{q}(x, y, z, t)$
 - $\begin{aligned} \boldsymbol{Q}(x, y, z) + \epsilon \left\{ \hat{\boldsymbol{q}}(x, y, z) \exp\left[-\jmath\Omega t\right] + \text{c.c.} \right\} & \text{3D global modes} \\ \boldsymbol{Q}(x, y) + \epsilon \left\{ \hat{\boldsymbol{q}}(x, y) \exp\left[\jmath\left(\beta z \Omega t\right)\right] + \text{c.c.} \right\} & \text{2D global modes} \\ \boldsymbol{Q}(y) + \epsilon \left\{ \hat{\boldsymbol{q}}(y) \exp\left[\jmath\left(\alpha x + \beta z \Omega t\right)\right] + \text{c.c.} \right\} & \text{Local stability} \end{aligned}$
- 3D global modes leads to generalized eigenvalue problem

$$-\jmath\Omega\hat{\boldsymbol{q}}=A\hat{\boldsymbol{q}}$$

IntroductionPreliminariesData-basedOperator-basedPerspectivesConclusion2D global modesIncompressible Navier-StokesIncompressible Navier-Stokes (1)• Incompressible Navier-Stokes
$$u = (u, v, w)$$
 $\partial_t u + (u \cdot \nabla) u = -\nabla p + \frac{1}{Re} \Delta u$ $\nabla \cdot u = 0$,• Base flow equations $Q(x, y) = (U, P) = (U, V, 0, P)$ $(U \cdot \nabla) U = -\nabla P + \frac{1}{Re} \Delta U$ $\nabla \cdot U = 0$.• Perturbation equations $q'(x, y, z, t) = (u', v', w', p')$ $\partial_t u' + (u' \cdot \nabla) U + (U \cdot \nabla) u' = -\nabla p' + \frac{1}{Re} \Delta u'$ $\nabla \cdot u' = 0$.

• Hypothesis: Base flow homogeneous in the transverse direction $q'(x, y, z, t) = \frac{1}{2} \{ (\hat{u}, \hat{v}, \hat{w}, \hat{p}) (x, y) \exp [j\beta z + \sigma t] + \text{c.c.} \} \text{ with } \sigma \in \mathbb{C}_{40/62}$

$$A \hat{\boldsymbol{q}} = \sigma B \hat{\boldsymbol{q}}$$
 with $\hat{\boldsymbol{q}} = (\hat{\boldsymbol{u}}, p) = (\hat{u}, \hat{v}, \jmath \hat{w}, \hat{p})$ global mode.

$$A = \begin{pmatrix} \mathcal{D} - \mathcal{C} - \partial_{x} \mathcal{U} & -\partial_{y} \mathcal{U} & 0 & -\partial_{x} \\ -\partial_{x} \mathcal{V} & \mathcal{D} - \mathcal{C} - \partial_{y} \mathcal{V} & 0 & -\partial_{y} \\ 0 & 0 & \mathcal{D} - \mathcal{C} & \beta \\ \partial_{x} & \partial_{y} & \beta & 0 \end{pmatrix}$$

and

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

where

1

$$\mathcal{D} = \frac{1}{Re} \left(\partial_{x^2} + \partial_{y^2} - \beta^2 \right) \qquad \mathsf{v}$$
$$\mathcal{C} = U \partial_x + V \partial_y$$

viscous diffusion of perturbation advection by base flow

Koopman operator

• Nonlinear dynamical system $f : \mathcal{M} \longrightarrow \mathcal{M}$ (\mathcal{M} finite dimensional)

$$\boldsymbol{\mathcal{X}}_{k+1} = \boldsymbol{f}(\boldsymbol{\mathcal{X}}_k)$$

• Let $g : \mathcal{M} \to \mathbb{R}$ be a scalar observable. \mathcal{K}_{f} Koopman operator

$$\mathcal{K}_{\boldsymbol{f}}g(\boldsymbol{\mathcal{X}}_k) := g(\boldsymbol{f}(\boldsymbol{\mathcal{X}}_k)) = g \circ \boldsymbol{f}(\boldsymbol{\mathcal{X}}_k) = g(\boldsymbol{\mathcal{X}}_{k+1}).$$

• \mathcal{K}_{f} : linear operator of infinite dimension

$$\mathcal{K}_{f}(\alpha_{1}g_{1}(\boldsymbol{\mathcal{X}}_{k}) + \alpha_{2}g_{2}(\boldsymbol{\mathcal{X}}_{k})) = \alpha_{1}\mathcal{K}_{f}g_{1}(\boldsymbol{\mathcal{X}}_{k}) + \alpha_{2}\mathcal{K}_{f}g_{2}(\boldsymbol{\mathcal{X}}_{k})$$

• Eigenfunctions and eigenvalues

$$\mathcal{K}_{\mathbf{f}} \phi^{(j)}(\boldsymbol{\mathcal{X}}_k) = \lambda^{(j)} \phi^{(j)}(\boldsymbol{\mathcal{X}}_k)$$

• Let define $z^{(j)} = \phi^{(j)}(\mathcal{X})$ nonlinear change of coordinates. We have:

$$z_{k+1}^{(j)} = \phi^{(j)}(\boldsymbol{\mathcal{X}}_{k+1}) = \phi^{(j)}(\boldsymbol{f}(\boldsymbol{\mathcal{X}}_{k})) = \mathcal{K}_{\boldsymbol{f}}\phi^{(j)}(\boldsymbol{\mathcal{X}}_{k}) = \lambda^{(j)}\phi^{(j)}(\boldsymbol{\mathcal{X}}_{k}) = \lambda^{(j)}z_{k}^{(j)}$$

Dynamics linear in $z^{(j)}$; $\mathcal{K}_{\mathbf{f}}$ may have enough eigenfunctions !!!

(Koopman, 1931)

• Let \boldsymbol{g} : $\mathcal{M} \to \mathbb{R}^p$ be a vectorial observable. We have:

$$m{g}(m{\mathcal{X}}_k) = \sum_{j=1}^{+\infty} \phi_j(m{\mathcal{X}}_k) m{k}_j$$
 with $m{k}_j$: Koopman modes

• We can show that:

$$\boldsymbol{g}(\boldsymbol{\mathcal{X}}_k) = \sum_{j=1}^{+\infty} \phi_j(\boldsymbol{\mathcal{X}}_k) \boldsymbol{k}_j = \sum_{j=1}^{+\infty} \mathcal{K}_{\boldsymbol{f}}^{k-1} \phi_j(\boldsymbol{\mathcal{X}}_1) \boldsymbol{k}_j = \sum_{j=1}^{+\infty} \lambda_j^{k-1} \phi_j(\boldsymbol{\mathcal{X}}_1) \boldsymbol{k}_j$$

 \implies Koopman modes can be obtained by DMD algorithm.

- estability and passivity (no generation of energy) preserved ;
- 9 procedure of model reduction numerically stable and efficient ;
- If possible, automatic generation of models.

such that $\left| W_2^H Q W_1 = I_{n_k} \right|$ where $Q \in \mathbb{R}^{n_X \times n_X}$ is the weight matrix.

- We consider: i) the projection $\mathcal{X} = W_1 \widehat{\mathcal{X}}$ and ii) $\widehat{\mathcal{Y}} \simeq \mathcal{Y}$.
- Algorithm:

$$\mathcal{R} = W_1 \hat{\mathcal{X}}(t) - f\left(W_1 \hat{\mathcal{X}}(t), \boldsymbol{c}(t)\right),$$

 $\hat{\mathcal{Y}}(t) = \boldsymbol{g}\left(W_1 \hat{\mathcal{X}}(t), \boldsymbol{c}(t)\right).$

2 Petrov-Galerkin projection: $W_2^H Q \mathcal{R} = 0_{n_k}$ *i.e.*

$$\widehat{\mathcal{S}}:\begin{cases} \dot{\widehat{\mathcal{X}}}(t) = \widehat{f}(\widehat{\mathcal{X}}(t), \boldsymbol{c}(t)) = W_2^H Q \, \boldsymbol{f}(W_1 \widehat{\mathcal{X}}(t), \boldsymbol{c}(t)), \\ \widehat{\mathcal{Y}}(t) = \widehat{\boldsymbol{g}}(\widehat{\mathcal{X}}(t), \boldsymbol{c}(t)) = \boldsymbol{g}(W_1 \widehat{\mathcal{X}}(t), \boldsymbol{c}(t)), \end{cases}$$

For $W_1 \neq W_2$: oblique projection. For $W_1 \equiv W_2$: Galerkin projection (orthogonal projection).

- ▷ For linear systems, various projection methods exist:
 - Krylov methods (Gugercin et Antoulas, 2006) proj. on the Krylov subspace of the controllability gramian: identification of the moments of the transfer function.
 - Balanced realizations proj. on dominant modes of the controllability and observability gramians
 - ▶ Balanced Truncation (Moore, 1981) ; Balanced POD (Rowley, 2005)
 - Instability methods proj. on global modes and adjoint global modes (Sipp, 2008)
- ▷ For non-linear systems:
 - Proper Orthogonal Decomposition or POD (Lumley 1967 ; Sirovich 1987) proj. on the subspace determined with snapshots of the system.
 - **2** Dynamic Mode Decomposition (Schmid, 2010)

a posteriori methods

▷ Boundary control of the Navier-Stokes equations $(x \in \Omega \text{ and } t \ge 0)$

$$\begin{cases} \frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{f}(\boldsymbol{u}, \boldsymbol{P}) \\ \boldsymbol{u}(\boldsymbol{x}, t = 0) = \boldsymbol{u}_0(\boldsymbol{x}) \quad (I.C.) \\ \boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{\gamma}(t)\boldsymbol{b}(\boldsymbol{x}) \quad \text{for } \boldsymbol{x} \in \Gamma_c, \quad (B.C.) \\ \boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{h}(\boldsymbol{x}) \quad \text{for } \boldsymbol{x} \in \Gamma \setminus \Gamma_c \quad (B.C.). \end{cases}$$

where

$$\boldsymbol{f}(\boldsymbol{u},P) = -\left(\boldsymbol{u}\cdot\boldsymbol{\nabla}\right)\boldsymbol{u} - \boldsymbol{\nabla}\boldsymbol{p} + rac{1}{\mathsf{Re}}\Delta\boldsymbol{u}.$$

$$\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}) = \frac{1}{N_t} \sum_{k=1}^{N_t} \boldsymbol{u}(\boldsymbol{x}, t_k)$$

•
$$\mathcal{U}' = \{ \boldsymbol{u}(\boldsymbol{x}, t_1) - \boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}), \cdots, \boldsymbol{u}(\boldsymbol{x}, t_{N_t}) - \boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}) \}$$

• $u(x, t) - u_m(x)$ is solenoidal

• $u_{POD}(x, t) = u(x, t) - u_m(x)$ verify homogeneous B.C. i.e.

$$\left. \Phi_i(\boldsymbol{x}) \right|_{\boldsymbol{x} \in \Gamma} = 0$$

•
$$\boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}) + \sum_{i=1}^{N_{\text{POD}}} a_i(t) \Phi_i(\boldsymbol{x}).$$

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion
Global stability analysis Koopman analysis Galerkin projection
POD Reduced-order model Choice of the decomposition variable
> B.C. dependent of time, *i.e.*
$$u(x, t) = u_{BC}(x, t)$$
 on Γ
• $\mathcal{U} = \{u(x, t_1), \dots, u(x, t_{N_t})\}$
• $u_m(x)$: ensemble average of \mathcal{U} (time average)
• $\mathcal{U}' = \{u(x, t_1) - \gamma(t_1)u_c(x) - u_m(x), \dots, u(x, t_{N_t}) - \gamma(t_{N_t})u_c(x) - u_m(x)\}$
• $u(x, t) = u_m(x) + \gamma(t)u_c(x) + \sum_{i=1}^{N_{POD}} a_i(t)\Phi_i(x)$ where
 $u_c(x) = b(x)$ on Γ_c and
 $u_c(x) = 0$ on $\Gamma \setminus \Gamma_c$.
• $u_{POD}(x, t) = u(x, t) - u_m(x) - \gamma(t)u_c(x)$ verify homogeneous B.C.
i.e.

$$|\Phi_i(\mathbf{x})|_{\mathbf{x}\in\Gamma}=0.$$

• Galerkin Projection of the Navier-Stokes equations onto the POD basis:

$$\begin{pmatrix} \boldsymbol{\Phi}_i, \frac{\partial \boldsymbol{u}}{\partial t} - \boldsymbol{f}(\boldsymbol{u}, \boldsymbol{P}) \end{pmatrix}_{\Omega} = \begin{pmatrix} \boldsymbol{\Phi}_i, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \, \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{p} - \frac{1}{\operatorname{Re}} \Delta \boldsymbol{u} \end{pmatrix}_{\Omega} = 0 \quad \forall i$$

$$\Longrightarrow \left(\boldsymbol{\Phi}_i, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \right)_{\Omega} = \left(\boldsymbol{\Phi}_i, -\boldsymbol{\nabla} \boldsymbol{p} + \frac{1}{\operatorname{Re}} \Delta \boldsymbol{u} \right)_{\Omega}.$$

• Integration by parts (Green formula):

$$\left(\boldsymbol{\Phi}_{i}, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \right)_{\Omega} = (\boldsymbol{p}, \, \boldsymbol{\nabla} \cdot \boldsymbol{\Phi}_{i})_{\Omega} - \frac{1}{\mathsf{Re}} \left((\boldsymbol{\nabla} \otimes \boldsymbol{\Phi}_{i})^{\mathsf{T}}, \, \boldsymbol{\nabla} \otimes \boldsymbol{u} \right)_{\Omega} \\ - [\boldsymbol{p} \, \boldsymbol{\Phi}_{i}]_{\mathsf{\Gamma}} + \frac{1}{\mathsf{Re}} [(\boldsymbol{\nabla} \otimes \boldsymbol{u}) \boldsymbol{\Phi}_{i}]_{\mathsf{\Gamma}}.$$

with
$$[\mathbf{a}]_{\Gamma} = \int_{\Gamma} \mathbf{a} \cdot \mathbf{n} \, \mathrm{d}\mathbf{x}$$
 and $(\overline{\overline{A}}, \overline{\overline{B}})_{\Omega} = \int_{\Omega} \overline{\overline{A}} : \overline{\overline{B}} \, \mathrm{d}\Omega = \sum_{i,j} \int_{\Omega} A_{ij} B_{ji} \, \mathrm{d}\mathbf{x}.$

• We decompose the velocity fields on N_{POD} modes:

$$\boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}) + \gamma(t) \, \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x}) + \sum_{k=1}^{N_{\text{POD}}} a_k(t) \Phi_k(\boldsymbol{x}).$$

• Dynamical system with $N_{\rm gal}~(\ll N_{\rm POD})$ modes kept:

$$egin{aligned} rac{d \ a_i(t)}{d \ t} =& \mathcal{A}_i + \sum_{j=1}^{N_{\mathsf{gal}}} \mathcal{B}_{ij} \ a_j(t) + \sum_{j=1}^{N_{\mathsf{gal}}} \sum_{k=1}^{N_{\mathsf{gal}}} \mathcal{C}_{ijk} \ a_j(t) a_k(t) \ &+ \mathcal{D}_i \ rac{d \ \gamma}{d \ t} + \left(\mathcal{E}_i + \sum_{j=1}^{N_{\mathsf{gal}}} \mathcal{F}_{ij} \ a_j(t)
ight) \gamma + \mathcal{G}_i \gamma^2 \end{aligned}$$

 $a_i(0) = (\boldsymbol{u}(\boldsymbol{x}, 0) - \boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}) - \gamma(0) \, \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x}), \, \boldsymbol{\Phi}_i(\boldsymbol{x}))_{\Omega}.$

 $\begin{array}{l} \mathcal{A}_i, \ \mathcal{B}_{ij}, \ \mathcal{C}_{ijk}, \ \mathcal{D}_i, \ \mathcal{E}_i, \ \mathcal{F}_{ij} \ \text{et} \ \mathcal{G}_i \ \text{depend only on } \Phi, \ \boldsymbol{u_m}, \ \boldsymbol{u_c} \ \text{and Re.} \end{array}$ $\bullet \ \text{Dynamics predicted by the POD ROM may be not sufficiently accurate} \\ \implies \text{need of identification techniques (Data Assimilation)} \\ \end{array}$

$$\mathcal{A}_{i} = -\left(\boldsymbol{\Phi}_{i}, \left(\boldsymbol{u_{m}} \cdot \boldsymbol{\nabla}\right) \boldsymbol{u_{m}}\right)_{\Omega} - \frac{1}{\mathsf{Re}}\left(\boldsymbol{\nabla}\boldsymbol{\Phi}_{i}, \boldsymbol{\nabla}\boldsymbol{u_{m}}\right)_{\Omega} + \frac{1}{\mathsf{Re}}\left[\boldsymbol{\Phi}_{i} \, \boldsymbol{\nabla}\boldsymbol{u_{m}}\right]_{\Gamma}$$

$$egin{aligned} \mathcal{B}_{ij} &= -\left(oldsymbol{\Phi}_i, \left(oldsymbol{u_m} \cdot oldsymbol{
abla}
ight)_\Omega - \left(oldsymbol{\Phi}_i, \left(oldsymbol{\Phi}_j
ight)_\Omega - rac{1}{\mathsf{Re}} \left(oldsymbol{
abla} \Phi_i, oldsymbol{
abla} \Phi_j
ight)_\Omega + rac{1}{\mathsf{Re}} \left[oldsymbol{\Phi}_i oldsymbol{
abla} \Phi_j
ight]_\Gamma \end{aligned}$$

$$\mathcal{C}_{ijk} = -\left({oldsymbol{\Phi}}_i, \left({oldsymbol{\Phi}}_j \cdot {oldsymbol{
abla}}
ight)_{\Omega} oldsymbol{\Phi}_k
ight)_{\Omega}$$

$$\mathcal{D}_i = -\left(\boldsymbol{\Phi}_i, \boldsymbol{u_c}
ight)_{\Omega}$$

$$\begin{aligned} \mathcal{E}_{i} &= -\left(\boldsymbol{\Phi}_{i}, \left(\boldsymbol{u_{m}}\cdot\boldsymbol{\nabla}\right)\boldsymbol{u_{c}}\right)_{\Omega} - \left(\boldsymbol{\Phi}_{i}, \left(\boldsymbol{u_{c}}\cdot\boldsymbol{\nabla}\right)\boldsymbol{u_{m}}\right)_{\Omega} \\ &- \frac{1}{\mathsf{Re}}\left(\boldsymbol{\nabla}\boldsymbol{\Phi}_{i}, \boldsymbol{\nabla}\boldsymbol{u_{c}}\right)_{\Omega} + \frac{1}{\mathsf{Re}}\left[\boldsymbol{\Phi}_{i}\,\boldsymbol{\nabla}\boldsymbol{u_{c}}\right]_{\Gamma} \end{aligned}$$

$$\mathcal{F}_{ij} = -\left(\mathbf{\Phi}_{i}, \left(\mathbf{\Phi}_{j} \cdot \mathbf{\nabla}\right) \mathbf{u}_{\mathbf{c}}\right)_{\Omega} - \left(\mathbf{\Phi}_{i}, \left(\mathbf{u}_{\mathbf{c}} \cdot \mathbf{\nabla}\right) \mathbf{\Phi}_{j}\right)_{\Omega}$$

$$\mathcal{G}_i = -\left(\mathbf{\Phi}_i, \left(\mathbf{u_c} \cdot \mathbf{\nabla} \right) \mathbf{u_c} \right)_{\Omega}$$

- Two dimensional flow around a circular cylinder at Re = 200
- Viscous, incompressible and Newtonian fluid
- Cylinder oscillation with a tangential velocity $\gamma(t)$

$$\gamma(t) = \frac{V_T}{u_\infty} = A\sin(2\pi S t_f t)$$

Fig. : Iso-values of the first 6 POD modes $\gamma(t) = A \sin(2\pi St_f t)$ with A = 2 and $St_f = 0, 5$.

POD of the controlled wake flow ($\gamma eq 0$)Integration and calibration

Reconstruction errors of POD ROM \Rightarrow time amplification of the modes

Fig. : Time evolution of the first 6 POD modes

$$(A = 2 \text{ and } St_f = 0, 5).$$

▷ Reasons:

- Extraction of large scale structures carrying energy
- Main of the dissipation contained in the small structures

Solutions:

Identification method. Data Assimilation for instance

projection (Navier-Stokes) : $a^{P}(t)$ prediction before identification (POD ROM)

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Outline					
1 Introdu	ction				
2 Prelimi	naries				
• Eiger	ivalue Decom	position			
Singu	Ilar Value Dec	composition			
3 Data-ba	ased				

- Proper Orthogonal Decomposition
- Dynamic Mode Decomposition
- Cluster-based Reduced Order Model

Operator-based

- Global stability analysis
- Koopman analysis
- Galerkin projection

Perspectives

Conclusion

- For linear models
 - Balanced Truncation
 - Balanced Proper Orthogonal Decomposition (BPOD)
 - Eigensystem Realization Algorithm (ERA)
- Non linear dimensionality reduction methods
 - Kernel Principal Component Analysis (K-PCA)
 - MultiDimensional Scaling (MDS)
 - Isomap
 - Locally Linear Embedding (LLE)
- High-Order Principal Component Analysis (HO-PCA)
- Resolvent analysis

• . . .

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Outline					
1 Introdu	ıction				
PrelimiEigeSing	naries nvalue Decom ular Value Dec	position composition			
 3 Data-b • Prop • Dyna • Clust 	ased oer Orthogona amic Mode De ter-based Red	l Decomposit ecomposition uced Order N	ion 1odel		

4 Operator-based

- Global stability analysis
- Koopman analysis
- Galerkin projection

Perspectives

Introduction	Preliminaries	Data-based	Operator-based	Perspectives	Conclusion
Machine L	earning			Sub c	ategories

Supervised Learning

Learn a mapping from inputs \boldsymbol{x} to outputs \boldsymbol{y} given a labeled set $\mathcal{D}_{SL} = \{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$.

- Classification or pattern recognition
- Regression Genetic Programming
- **2** Unsupervised Learning Given only inputs $\mathcal{D}_{UL} = \{x_i\}_{i=1}^N$, discover "interesting patterns"
 - Clustering: CROM
 - Dimensionality Reduction: PCA, POD, DMD
- 8 Reinforcement Learning

How to take actions in an environment so as to maximize a cumulative reward. Discretized and continuous RL

