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Turbulent flows

Generation of turbulence behind a grid, T. Corke and H. Nagib in M. Van Dyke, 1982

Fluctuations over a wide range of non-linearly interacting scales

⇓

Understanding the physics of turbulence
has very early involved direct numerical simulations
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Direct Numerical Simulations (DNS)

⇒ Resolve all length and time scales

Navier-Stokes equations
Conservation of mass and momentum

∂tU + U.∇U = −1/ρ ∇p + ν∆U
∇.U = 0

(velocity U, pressure p, density ρ, viscosity ν)

+ initial and boundary conditions

⇓

• Gives access to detailed physical quantities (beyond experiments)
• Computationally intensive
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How do flows become turbulent?

O. Reynolds’ pipe flow experiment (1883)

Observation of the laminar, transitional and turbulent flow regimes
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DNS of transitional and turbulent flows
Viscous laminar boundary layers behave as a selective disturbance
amplifier

y Le

2h

entrance flow fully developed turbulent flow

U0

xt

x

transition

• selection of primary instabilities
(such as Tollmien-Schlichting waves or Klebanov modes)
are well predicted by linear stability theory

• transition result from secondary instabilities
even if all primary modes are asymptotically stable (streaks)

In spatially evolving flows, primary modes interact nonlinearly with the
base flow and breakdown is always a nonlinear processus

⇒ linear theory no longer applies
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Global optimization and space-time nonlinear dynamic

(a) t = 0. ωx . (b) t = 1. ωx .

(c) t = 1. u′ ↗ (d) t = 3. u′ ↗

A. Cadiou et al., Linear and nonlinear space-time dynamics of optimal
wavepackets for streaks in a channel entrance flow ,
EUROMECH Colloquium 591, Bari, September 2017
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Boundary layers interaction and receptivity

Top view of the lower wall :

Side view of the channel flow :
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Bottom view of the upper wall : Top view of the lower wall :

A. Cadiou et al., DNS of turbulent by-pass transition at the entrance of a plane
channel, Progress in Turbulence V, 2013.
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Towards fully developed turbulent channel flow
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M. Capuano et al., DNS of the turbulent flow evolving in a plane channel from
the entry to the fully developed state, Progress in Turbulence VI, 2015.
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Physical and computational challenge:
Numerical experiments of spatially evolving
transitional and turbulent flows
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HPC ?

"High-Performance Computing is the use of super computers and
parallel processing techniques for solving complex computational
problems." (from Techopedia)

Very elongated (and large) geometry

• Numerical experiments require spectral accuracy
• Lx/h × Ly/h × Lz/h = 280× 2× 9.4
• 34560× 192× 768 modes (∼ 5 billions)

Periodic turbulent box (Reτ = 590), Moser, Kim, Mansour, 1999

• Lx/h × Ly/h × Lz/h = 6.4× 2× 3.2
• 384× 256× 384 modes (∼ 38 millions)
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Requires from 100 to 10000 cores
Large configuration in space and time

• 34560× 192× 768 modes (∼ 5. billions of modes)
• travel 1 length with it=600000 iterations.

Memory constraint

• N = Nx × Ny × Nz , with N very large
- large memory requirement (executable ∼ 2To)
- BlueGene/P 0.5 Go per core ⇒ ∼ 4000 cores needed

Wall clock time constraint

• CPU time 150h ∼ 6 days on ∼ 16000 cores
- with 100 cores (if possible), 160 times slower, 24000h ∼ 3 years
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Big Data?

"Big data is a blanket term for any collection of data sets so large and
complex that it becomes difficult to process using on-hand database
management tools or traditional data processing applications.
The challenges include capture, storage, search, sharing, transfer,
analysis and visualization. "
(from Wikipedia)

• An old (and recurrent) problem of fluid mechanics simulations
• But storage, network flow rate and connectivity grow more slowly
than computation

⇒ Exponential production of data

⇒ Revisit traditional usage
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Data I/O and management

Large amount of highly partitioned files

• Large data
- case 34560 × 192 × 768 : one velocity field ∼ 120 Go

statistics ∼ 1 To
• Large amount of files, could rapidly exceeds inode or quota limit

- statistics on ∼ 2000 processes, ∼ 16 000 files
- write ∼ 140 time step during travel length (Lx = 280)
(disk quota ∼ 16 To)
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Spectral approximation

Spectral coefficients with Nx × Ny × Nz modes

U(x , y , z , t) =
Nx/2∑

m=−Nx/2

Nz/2∑
p=−Nz/2

Ny−1∑
n=0

αmp
OS,nÛmp

OS,n +
Ny−1∑
n=0

αmp
SQ,nÛmp

SQ,n


• Optimal representation of a solenoidal velocity field
• Elimination of the pressure

Spectral approximation

• Fourier-Chebyshev approximation with a Galerkin formulation
• Time integration with Crank Nicolson / Adams Bashforth scheme
(2nd order) or implicit Runge-Kutta (3rd order)
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Resolution of coupled systems for nonlinear advective terms
At each time step, Nx ×Nz linear systems of dimension Ny − 3 are solved

Amp
OSα

mp
OS = bmp

OS

Amp
SQα

mp
SQ = bmp

SQ

Amp
OS and Amp

SQ are sparse matrices (resp. 7D and 5D)
bmp = bmp(αmp

SQ , α
mp
OS)

contains non-linear terms
(convolution products coupling every αmp

n )

⇒ b is calculated in physical space
⇒ must perform FFTs in each direction

Per iteration, i.e. at each time step,
27 FFT (direct or inverse) are performed (∼ 16 millions of FFT)
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2D domain decomposition

SPECTRAL  SPACE

SPECTRAL  SPACE

PHYSICAL SPACE
udu/dx

Non linear terms

udu/dx

Non linear terms

u
du/dx

FFT inverse axe x

FFT axe x

FFT inverse axe z

FFT axe z

• Chebyshev between walls
(y direction, Ny + 1 modes)

• 2D FFT in periodical directions
(x direction and z direction)

• Transpose from
y−pencil to x−pencil,
x−pencil to z−pencil and back

Increase the number of MPI processes and reduce wall clock time

• 1D decomposition: MPI ≤ Ny

34560× 192× 768 → max. of MPI processes: nproc=192
• 2D decomposition: MPI ≤ Ny × Nz

34560× 192× 768 → max. of MPI processes: nproc=147 456
• Perform data communications and remapping
• Choose data rearrangement to limit the increase in communications
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Illustration

64 128 256 512 1024 2048 4096
number of cores

10-1

100

101

tim
e

1D
2D

Figure: Time per iteration for a 1024 × 256 × 256 case.

• improve the maximum of MPI processes
• could be limited by memory availability
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Constraints related to modern many-cores platforms
Tendancy towards many-cores platforms

• Limited number of nodes
• Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

• allow larger number of modes within the same wall clock time
• limit the memory available per processus
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Hybrid OpenMP/MPI

Suitable for recent many-core platforms

• Reduces the number of MPI processes
• Reduces the number of communications
• Increases the available memory size per node

Modification for many threads

• Time of thread creation exceeds inner loop time execution
• Implementation of explicit creation of threads
• Recover full MPI performance and allow further improvment.
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Illustration

64 128 256 512 1024 2048 4096
number of cores
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tim
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Figure: Time per iteration for a 1024 × 256 × 256 case.

Suitable for recent many-core platforms

• Reduces the number of MPI processes
• Reduces the number of communications
• Increases the available memory size per node

• Implementation of explicit creation of threads
• Coarse grained OpenMP needed for fast inner loop
• Define a new synchronization barrier
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Measure
MPI proc./node threads per node nodes cores time per it. (s) gain

16 1 16 256 1.46
8 1 32 512 1.47
4 1 64 1024 1.43
2 1 128 2048 1.44
1 1 256 4096 1.44 1.00
1 2 256 4096 0.74 1.95
1 4 256 4096 0.38 3.79
1 8 256 4096 0.21 6.86
1 16 256 4096 0.14 10.28
16 1 256 4096 0.11 12.45
8 1 256 2048 0.20 6.85
4 1 256 1024 0.35 3.91
2 1 256 512 0.71 1.93
1 1 256 256 1.37 1.00

Time per iteration for the 1024× 256× 256 case.
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More than domain decomposition ...

Tasks parallelization : overlap communication by computation

• reduces by 20% time per iteration

Placement of processus

• specific on each platform, optimize interconnection communications
• avoid threads to migrate from one core to another

example: TORUS versus MESH in BlueGene/P platform - 50% faster



Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Illustration

Nx × Ny × Nz cores map. comm.(%) time per iteration (s)
Mesh Torus Mesh Torus

1024× 256× 256 512 16(×32) 16.2 - 0.95 -
1024 32(×32) 15.8 - 0.52 -
2048 32(×64) 15.2 12.0 0.28 0.23

4096× 512× 512 2048 32(×64) 19.9 7.8 4.55 3.96
4096 64(×64) 30.8 10.2 4.29 1.98
8192 64(×128) 39.2 12.7 2.25 1.09
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Efficiency

1024 16384 32768 65536
number of cores

1024

16384

32768

65536

sp
ee

du
p

ideal
8192×512×512

34560×384×768

16384×512×8192

• Fairly portable on HPC
• Reasonable efficiency on O(105) cores
• Small time spent waiting for communications ∼ 12%
• Fast wall-clock time for a global numerical method (1.3 s/it on
BlueGene/P - 0.2 s/it on SuperMUC for 1 billions of modes)

J. Montagnier et al., Towards petascale spectral simulations for transition
analysis in wall bounded flow, Int. J. for Numerical Methods in Fluids, 2012
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HPC implementation
Parallelization

• 2D domain decomposition with MPI and FFT 3D
• Optimal data rearrangement to limit communications

Hybrid MPI/OpenMP on recent many-cores HPC platforms

• implementation of explicit threads creation
• tasks parallelization (masks communications)

Parallel Input/Output for check-pointing and Data management

• Fast parallel I/O using standard XML/VTK format
• Unix I/O faster than MPI I/O (2x)
• I/O files embedded in a tar file (pvd + parallel vtr)
• perform FPZIP compression if needed (lossless or lossy (48bits))
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NadiaSpectral solver

NS solver
C++ library
highly parallel compute
and I/O kernel

Tools:
git
CMake/CTest
MPI/OpenMP
FFTW, BLAS

application
main loop

application
main loop

application
main loop

application
main loop

? ? ? ?6 6 6 6

xml
vtk

xml
vtk

xml
vtk

xml
vtk

tar file
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Bottleneck: data manipulation
Simulation (multi-run batch) on
LRZ SuperMUC

• ∼ 5 billions of modes
34560× 192× 768

• run with ∼ 1s/∆t on 16 384
cores 2048 partitions

• Large data ∼ 120 Go/∆t,
statistics ∼ 1 To

Manipulation of very large and highly partitioned data

• Data manipulation during simulation (checkpoint data)
• Data manipulation for analysis, post-treatment and visualization
⇒ parallel strategy mandatory
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Data manipulation during simulation
Data Input/Output and storage

• Large data
- case 34560 × 192 × 768 : one velocity field ∼ 120 Go

statistics ∼ 1 To
⇒ Use parallel IO (each processes writes its own data)
• Large amount of file, could rapidly exceeds inode or quota limit

- statistics on ∼ 2000 processes, ∼ 16 000 files
- write ∼ 140 time step during travel length (Lx = 280)
(disk quota ∼ 16 To)

• Manage the large amount of data generated
⇒ Use of predefined parallel format (VTK, HDF5, NetCFD, ...)

beware not to add useless complexity for regular structured data
⇒ wrap in tar archive file or separated directory
⇒ Optimize data transfert between platform
⇒ or perform co-analysis of the flow without writting flow fields
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Data manipulation after simulation

Data processing

• Part of the analysis is performed during simulation
• Part of it is explored afterwards

3D visualization

• Cannot be performed directly on HPC platforms

Requirements and constraints

• Entails spatial derivation, eigenvalues evaluation ...
• Preserve accuracy of the simulation
• Should be interactive and when ready on batch mode
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Traditional usage for 3D visualization

Workflow
- Computation on remote platform
- Write data result on disk during computation
- Transfer data to local server
- Use open-source softwares for analysis

Open-source softwares

• VisIt : parallel general interactive
tools (with our own DB reader
plugin)

• ParaView : (idem)
• Mayavi : Python VTK interface
• Python + matplotlib : 1D , 2D +
some 3D
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Limitation for spectral approximation
Linear interpolation between collocation points

ă

1.0 0.5 0.0 0.5 1.0
y/h

0.4

0.2

0.0

0.2

0.4
U

simulation
lin. interp. Cheb. pts Ny =16

Cheb. interp. lin. pts Ny =32

• Missing information, yet contained in the original spectral 3D field
• Rendering and interactivity slow down on non regular grid
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Domain decomposition

Slices between partitions of the domain are ignored

Simulation uses non-overlapping domain decomposition
Visualization requires overlapping domain decomposition
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Workflow

HPC platform (Tier-0, Tier-1)

parallel transfer (GridFTP, ...)

data server

Ressources EQUIP@MESO
2 clusters HPC 2*56 TFlops 
2*340 CPU Intel SB 2.6 Ghz

2*2720 coeurs - 2*11 To RAM
Réseau InfiniBand FDR

La FLMSN a pour vocation de fédérer et 
soutenir les activités de calcul HPC et de 
modélisation dans la région lyonnaise. 
Elle regroupe 3 centres de calcul : 
● le P2CHPD à la Doua, 
● le PSMN à Gerland
● le PMCS2I à Ecully.
Elle intègre aussi 2 structures autour de la 
modélisation et la simulation
● IXXI institut Rhône-Alpin des systèmes 

complexes
● CBP Centre Blaise Pascal 
et soutien le réseau Lyon-Calcul

FLMSN.univ-lyon1.fr

Fédération Lyonnaise de Modélisation 
et Sciences Numériques 

FLMSN

HPC cluster (Tier-2)

NFS
graphic sta-
tions (Tier-2)

user

NFS
or

ssh
tunneling

NX (x2go)/vnc
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Analysis and visualization of stored data

Analysis a posteriori (in parallel)

• Python script with mpi4py
• parallel client server with 2D/3D (matplotlib, mayavi)
• interface with C++ lib using swig
• manipulate tar data file
• analyze with simpler parallel partitioning (1D)
• preserve the same accuracy in the compute and analyze steps

• Still requires disk I/O, data transfert and storage
• Data storage and post-treatment identified as a major challenge

S. Requena, Big Data and HPC, 2013
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In situ (real computational time) visualization

Remote co-processing during simulation without stored data

Open-source software

• VisIt
• ParaView

Limitations

• run with the same
granularity as the simulation

• affect speed of computation

Requirements

• Preserve spectral accuracy
• Computation of quantities
from simulations variables

• Fast enough
• Act on simulation parameters
(like in experiment)
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Requirements for embedded analysis

Code instrumentation

• add parallel analysis code as independant MPI processes
• use its own time-step
• interact with the simulation every ∼ 100∆t
• can use dedicated nodes
• use a coarse and simpler domain decomposition (operators)
• interpolated on finer regular overlapping grids (visualization)
• can modify the parameters of the simulation (control)

Interface with parallel analysis and visualisation

• Python and matplotlib
• VisIt (libsim)
• allow interactivity and scripting
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Embedded (in-situ) analysis using Python

Common usage of Python for HPC

• simulation driven by Python script
• HPC Python code using mpi4py

Our approach

• No performance degradation of the computation kernel
• Embed a Python interpreter in C++
• Only used for the analysis and control of the simulation

• Simpler domain decomposition for the analysis
• Require 2 groups of MPI processes

• Nk nodes for computation kernel (in C++)
• Na analysis nodes (with Python): Na � Nk
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NadiaSpectral solver and analysis

NS solver
C++ library
highly parallel compute
and I/O kernel

Analysis
python
parallel lib
numpy, mpi4py

Tools:
git
CMake/CTest
MPI/OpenMP
FFTW, BLAS
SWIG

compute
loop compute

loop compute
loop compute

loop

python
script

python
script

xml
vtk

xml
vtk

control
loop

control
loop

compute nodes control nodes
tar file
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Follow time evolution of flow structures
Explore time evolution at Reh = 2500

5760× 192× 512 modes (∼ 566 millions of modes)

In-situ analysis (embedded to the simulation)

• Run simulation on 144 nodes (128 + 16 nodes)
- 512 MPI procs, 4 MPI processes per node, 4 threads
- 2048 cores (∼ 128 thin nodes)

- 16 MPI procs, 1 MPI processus per node
- 16 cores (∼ 16 fat nodes)

• Analyze every 50 time steps
• Computation of Λ2 criteria during 10 time steps
⇒ does not affect global CPU time

Generate an evolution in time with more than 3000 images
... and interact with the code !
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Sinuous and varicous instabilities

Aopt = 2% Aopt = 4%

at fixed time t
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Visualization of 3D temporal evolution

x

y
U
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Present workflow versus traditional

Comparison of strategies for the simulation 5760× 192× 768 of modes
on 2 084 cores for 512 MPI partitions.

10 analysis at the same physical time interval ∆t.

Traditional usage, 2 048 cores for 512 MPI partitions, 1.4 To of data,
I/ONS solver I/ONS solver I/O. . . NS solver transfer processing

or when sharing cores with analysis,
NS solver NS solver . . . NS solver I/O

Revisited in-situ co-processing analysis, solver on 2 048 cores for 512 MPI
partition, 16 cores for co-processing, 28 Go output data

NS solver NS solver . . . NS solver I/O
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Benefits of the new implementation

• Simplify the analysis
• Get faster developments and tests
• Make overlap I/O and computation, asynchoneous execution and
communications

• Allow in-situ visualization
• but need a more complex environment !

• coupling between C++/python/external tools (VisIt)
• asynchroneous communications
• depend on a large number of external libraries (compatibility)
• make the porting and tuning on HPC platforms more complex
limitation of the module system



Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Outline

1 Challenge

2 HPC and Big Data

3 Implementation and bottleneck

4 Data management, analysis and visualization

5 Conclusion



Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

What was achieved for HPC simulations

A suitable development and software environment

• code C++
• BLAS, GSL
• MPI/OpenMP - optimized libraries (e.g. FFTW, MKL)
• cmake, git

• swig interface Python and a C++ library derived from the code
• python, mpi4py, numpy, matplotlib, mayavi, visit ...

Development of a parallel strategy for the code

• revisit parallel strategy of the code
• revisit strategy of data transfer and storage
• revisit strategy for the analysis and visualization
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To read mode ...
1 M. Buffat and A. Cadiou and L. Le Penven and Ch. Pera,
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3 A. Cadiou, M. Buffat, L. Le Penven
Bypass transition at the entrance of a plane channel, (2014), EFMC10,
Copenhagen.
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