
Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

In-situ analysis and visualization
of massively parallel computations of transitional

and turbulent flows

Anne Cadiou, Marc Buffat, Christophe Pera∗

Bastien Di Pierro, Frédéric Alizard, Lionel Le Penven

Laboratoire de Mécanique des Fluides et d’Acoustique
∗Département de Mécanique de L’Université Lyon 1

CNRS, Université Lyon I, École Centrale de Lyon, INSA de Lyon

Workshop TDMF, Orsay
Thursday 30th november 2017

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Outline

1 Challenge

2 HPC and Big Data

3 Implementation and bottleneck

4 Data management, analysis and visualization

5 Conclusion

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Turbulent flows

Generation of turbulence behind a grid, T. Corke and H. Nagib in M. Van Dyke, 1982

Fluctuations over a wide range of non-linearly interacting scales

⇓

Understanding the physics of turbulence
has very early involved direct numerical simulations

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Direct Numerical Simulations (DNS)

⇒ Resolve all length and time scales

Navier-Stokes equations
Conservation of mass and momentum

∂tU + U.∇U = −1/ρ ∇p + ν∆U
∇.U = 0

(velocity U, pressure p, density ρ, viscosity ν)

+ initial and boundary conditions

⇓

• Gives access to detailed physical quantities (beyond experiments)
• Computationally intensive

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

How do flows become turbulent?

O. Reynolds’ pipe flow experiment (1883)

Observation of the laminar, transitional and turbulent flow regimes

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

DNS of transitional and turbulent flows
Viscous laminar boundary layers behave as a selective disturbance
amplifier

y Le

2h

entrance flow fully developed turbulent flow

U0

xt

x

transition

• selection of primary instabilities
(such as Tollmien-Schlichting waves or Klebanov modes)
are well predicted by linear stability theory

• transition result from secondary instabilities
even if all primary modes are asymptotically stable (streaks)

In spatially evolving flows, primary modes interact nonlinearly with the
base flow and breakdown is always a nonlinear processus

⇒ linear theory no longer applies

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Global optimization and space-time nonlinear dynamic

(a) t = 0. ωx . (b) t = 1. ωx .

(c) t = 1. u′ ↗ (d) t = 3. u′ ↗

A. Cadiou et al., Linear and nonlinear space-time dynamics of optimal
wavepackets for streaks in a channel entrance flow ,
EUROMECH Colloquium 591, Bari, September 2017

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Boundary layers interaction and receptivity

Top view of the lower wall :

Side view of the channel flow :

%
%%

PPPPPPPP

!!!!!!

PPPPPPP

Bottom view of the upper wall : Top view of the lower wall :

A. Cadiou et al., DNS of turbulent by-pass transition at the entrance of a plane
channel, Progress in Turbulence V, 2013.

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Towards fully developed turbulent channel flow

0 50 100 150 200 250 300
x/h

0.010

0.008

0.006

0.004

0.002

0.000

0.002
β

0 50 100 150 200
y+

0.3

0.2

0.1

0.0

0.1

0.2

0.3
MKM Reτ=590

0.0 0.2 0.4 0.6 0.8 1.0
y/δ0.99

3

2

1

0

1

2

3

4
MKM Reτ=590

Sch Reθ=1000

Sch Reθ=670

at Reh = 10000
Laminar, Le/h ∼ 1200
Turbulent, Le/h ∼ 110
Fully developed turbulence, Reτ = 567

100 101 102

y+

1

0

1

2

3
MKM Reτ=590

Sch Reθ=1000

Sch Reθ=670

Time-averaged second-order velocity correlations in wall distance at 3 sections

M. Capuano et al., DNS of the turbulent flow evolving in a plane channel from
the entry to the fully developed state, Progress in Turbulence VI, 2015.

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Physical and computational challenge:
Numerical experiments of spatially evolving
transitional and turbulent flows

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Outline

1 Challenge

2 HPC and Big Data

3 Implementation and bottleneck

4 Data management, analysis and visualization

5 Conclusion

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

HPC ?

"High-Performance Computing is the use of super computers and
parallel processing techniques for solving complex computational
problems." (from Techopedia)

Very elongated (and large) geometry

• Numerical experiments require spectral accuracy
• Lx/h × Ly/h × Lz/h = 280× 2× 9.4
• 34560× 192× 768 modes (∼ 5 billions)

Periodic turbulent box (Reτ = 590), Moser, Kim, Mansour, 1999

• Lx/h × Ly/h × Lz/h = 6.4× 2× 3.2
• 384× 256× 384 modes (∼ 38 millions)

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Requires from 100 to 10000 cores
Large configuration in space and time

• 34560× 192× 768 modes (∼ 5. billions of modes)
• travel 1 length with it=600000 iterations.

Memory constraint

• N = Nx × Ny × Nz , with N very large
- large memory requirement (executable ∼ 2To)
- BlueGene/P 0.5 Go per core ⇒ ∼ 4000 cores needed

Wall clock time constraint

• CPU time 150h ∼ 6 days on ∼ 16000 cores
- with 100 cores (if possible), 160 times slower, 24000h ∼ 3 years

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Big Data?

"Big data is a blanket term for any collection of data sets so large and
complex that it becomes difficult to process using on-hand database
management tools or traditional data processing applications.
The challenges include capture, storage, search, sharing, transfer,
analysis and visualization. "
(from Wikipedia)

• An old (and recurrent) problem of fluid mechanics simulations
• But storage, network flow rate and connectivity grow more slowly
than computation

⇒ Exponential production of data

⇒ Revisit traditional usage

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Data I/O and management

Large amount of highly partitioned files

• Large data
- case 34560 × 192 × 768 : one velocity field ∼ 120 Go

statistics ∼ 1 To
• Large amount of files, could rapidly exceeds inode or quota limit

- statistics on ∼ 2000 processes, ∼ 16 000 files
- write ∼ 140 time step during travel length (Lx = 280)
(disk quota ∼ 16 To)

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Outline

1 Challenge

2 HPC and Big Data

3 Implementation and bottleneck

4 Data management, analysis and visualization

5 Conclusion

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Spectral approximation

Spectral coefficients with Nx × Ny × Nz modes

U(x , y , z , t) =
Nx/2∑

m=−Nx/2

Nz/2∑
p=−Nz/2

Ny−1∑
n=0

αmp
OS,nÛmp

OS,n +
Ny−1∑
n=0

αmp
SQ,nÛmp

SQ,n

• Optimal representation of a solenoidal velocity field
• Elimination of the pressure

Spectral approximation

• Fourier-Chebyshev approximation with a Galerkin formulation
• Time integration with Crank Nicolson / Adams Bashforth scheme
(2nd order) or implicit Runge-Kutta (3rd order)

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Resolution of coupled systems for nonlinear advective terms
At each time step, Nx ×Nz linear systems of dimension Ny − 3 are solved

Amp
OSα

mp
OS = bmp

OS

Amp
SQα

mp
SQ = bmp

SQ

Amp
OS and Amp

SQ are sparse matrices (resp. 7D and 5D)
bmp = bmp(αmp

SQ , α
mp
OS)

contains non-linear terms
(convolution products coupling every αmp

n)

⇒ b is calculated in physical space
⇒ must perform FFTs in each direction

Per iteration, i.e. at each time step,
27 FFT (direct or inverse) are performed (∼ 16 millions of FFT)

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

2D domain decomposition

SPECTRAL SPACE

SPECTRAL SPACE

PHYSICAL SPACE
udu/dx

Non linear terms

udu/dx

Non linear terms

u
du/dx

FFT inverse axe x

FFT axe x

FFT inverse axe z

FFT axe z

• Chebyshev between walls
(y direction, Ny + 1 modes)

• 2D FFT in periodical directions
(x direction and z direction)

• Transpose from
y−pencil to x−pencil,
x−pencil to z−pencil and back

Increase the number of MPI processes and reduce wall clock time

• 1D decomposition: MPI ≤ Ny

34560× 192× 768 → max. of MPI processes: nproc=192
• 2D decomposition: MPI ≤ Ny × Nz

34560× 192× 768 → max. of MPI processes: nproc=147 456
• Perform data communications and remapping
• Choose data rearrangement to limit the increase in communications

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Illustration

64 128 256 512 1024 2048 4096
number of cores

10-1

100

101

tim
e

1D
2D

Figure: Time per iteration for a 1024 × 256 × 256 case.

• improve the maximum of MPI processes
• could be limited by memory availability

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Constraints related to modern many-cores platforms
Tendancy towards many-cores platforms

• Limited number of nodes
• Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

• allow larger number of modes within the same wall clock time
• limit the memory available per processus

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Constraints related to modern many-cores platforms
Tendancy towards many-cores platforms

• Limited number of nodes
• Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

• allow larger number of modes within the same wall clock time
• limit the memory available per processus

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Constraints related to modern many-cores platforms
Tendancy towards many-cores platforms

• Limited number of nodes
• Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

• allow larger number of modes within the same wall clock time
• limit the memory available per processus

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Constraints related to modern many-cores platforms
Tendancy towards many-cores platforms

• Limited number of nodes
• Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

• allow larger number of modes within the same wall clock time
• limit the memory available per processus

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Constraints related to modern many-cores platforms
Tendancy towards many-cores platforms

• Limited number of nodes
• Increase of cores per node (BlueGene/P = 4 - SuperMUC = 16)

Increase MPI processes

• allow larger number of modes within the same wall clock time
• limit the memory available per processus

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Hybrid OpenMP/MPI

Suitable for recent many-core platforms

• Reduces the number of MPI processes
• Reduces the number of communications
• Increases the available memory size per node

Modification for many threads

• Time of thread creation exceeds inner loop time execution
• Implementation of explicit creation of threads
• Recover full MPI performance and allow further improvment.

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Illustration

64 128 256 512 1024 2048 4096
number of cores

10-1

100

101

tim
e

T1
T8

64 128 256 512 1024 2048 4096
number of cores

10-1

100

101

tim
e

T1
T2
T4
T8

Figure: Time per iteration for a 1024 × 256 × 256 case.

Suitable for recent many-core platforms

• Reduces the number of MPI processes
• Reduces the number of communications
• Increases the available memory size per node

• Implementation of explicit creation of threads
• Coarse grained OpenMP needed for fast inner loop
• Define a new synchronization barrier

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Measure
MPI proc./node threads per node nodes cores time per it. (s) gain

16 1 16 256 1.46
8 1 32 512 1.47
4 1 64 1024 1.43
2 1 128 2048 1.44
1 1 256 4096 1.44 1.00
1 2 256 4096 0.74 1.95
1 4 256 4096 0.38 3.79
1 8 256 4096 0.21 6.86
1 16 256 4096 0.14 10.28
16 1 256 4096 0.11 12.45
8 1 256 2048 0.20 6.85
4 1 256 1024 0.35 3.91
2 1 256 512 0.71 1.93
1 1 256 256 1.37 1.00

Time per iteration for the 1024× 256× 256 case.

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

More than domain decomposition ...

Tasks parallelization : overlap communication by computation

• reduces by 20% time per iteration

Placement of processus

• specific on each platform, optimize interconnection communications
• avoid threads to migrate from one core to another

example: TORUS versus MESH in BlueGene/P platform - 50% faster

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Illustration

Nx × Ny × Nz cores map. comm.(%) time per iteration (s)
Mesh Torus Mesh Torus

1024× 256× 256 512 16(×32) 16.2 - 0.95 -
1024 32(×32) 15.8 - 0.52 -
2048 32(×64) 15.2 12.0 0.28 0.23

4096× 512× 512 2048 32(×64) 19.9 7.8 4.55 3.96
4096 64(×64) 30.8 10.2 4.29 1.98
8192 64(×128) 39.2 12.7 2.25 1.09

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Efficiency

1024 16384 32768 65536
number of cores

1024

16384

32768

65536

sp
ee

du
p

ideal
8192×512×512

34560×384×768

16384×512×8192

• Fairly portable on HPC
• Reasonable efficiency on O(105) cores
• Small time spent waiting for communications ∼ 12%
• Fast wall-clock time for a global numerical method (1.3 s/it on
BlueGene/P - 0.2 s/it on SuperMUC for 1 billions of modes)

J. Montagnier et al., Towards petascale spectral simulations for transition
analysis in wall bounded flow, Int. J. for Numerical Methods in Fluids, 2012

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

HPC implementation
Parallelization

• 2D domain decomposition with MPI and FFT 3D
• Optimal data rearrangement to limit communications

Hybrid MPI/OpenMP on recent many-cores HPC platforms

• implementation of explicit threads creation
• tasks parallelization (masks communications)

Parallel Input/Output for check-pointing and Data management

• Fast parallel I/O using standard XML/VTK format
• Unix I/O faster than MPI I/O (2x)
• I/O files embedded in a tar file (pvd + parallel vtr)
• perform FPZIP compression if needed (lossless or lossy (48bits))

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

NadiaSpectral solver

NS solver
C++ library
highly parallel compute
and I/O kernel

Tools:
git
CMake/CTest
MPI/OpenMP
FFTW, BLAS

application
main loop

application
main loop

application
main loop

application
main loop

? ? ? ?6 6 6 6

xml
vtk

xml
vtk

xml
vtk

xml
vtk

tar file

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Outline

1 Challenge

2 HPC and Big Data

3 Implementation and bottleneck

4 Data management, analysis and visualization

5 Conclusion

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Bottleneck: data manipulation
Simulation (multi-run batch) on
LRZ SuperMUC

• ∼ 5 billions of modes
34560× 192× 768

• run with ∼ 1s/∆t on 16 384
cores 2048 partitions

• Large data ∼ 120 Go/∆t,
statistics ∼ 1 To

Manipulation of very large and highly partitioned data

• Data manipulation during simulation (checkpoint data)
• Data manipulation for analysis, post-treatment and visualization
⇒ parallel strategy mandatory

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Data manipulation during simulation
Data Input/Output and storage

• Large data
- case 34560 × 192 × 768 : one velocity field ∼ 120 Go

statistics ∼ 1 To
⇒ Use parallel IO (each processes writes its own data)
• Large amount of file, could rapidly exceeds inode or quota limit

- statistics on ∼ 2000 processes, ∼ 16 000 files
- write ∼ 140 time step during travel length (Lx = 280)
(disk quota ∼ 16 To)

• Manage the large amount of data generated
⇒ Use of predefined parallel format (VTK, HDF5, NetCFD, ...)

beware not to add useless complexity for regular structured data
⇒ wrap in tar archive file or separated directory
⇒ Optimize data transfert between platform
⇒ or perform co-analysis of the flow without writting flow fields

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Data manipulation after simulation

Data processing

• Part of the analysis is performed during simulation
• Part of it is explored afterwards

3D visualization

• Cannot be performed directly on HPC platforms

Requirements and constraints

• Entails spatial derivation, eigenvalues evaluation ...
• Preserve accuracy of the simulation
• Should be interactive and when ready on batch mode

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Traditional usage for 3D visualization

Workflow
- Computation on remote platform
- Write data result on disk during computation
- Transfer data to local server
- Use open-source softwares for analysis

Open-source softwares

• VisIt : parallel general interactive
tools (with our own DB reader
plugin)

• ParaView : (idem)
• Mayavi : Python VTK interface
• Python + matplotlib : 1D , 2D +
some 3D

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Limitation for spectral approximation
Linear interpolation between collocation points

ă

1.0 0.5 0.0 0.5 1.0
y/h

0.4

0.2

0.0

0.2

0.4
U

simulation
lin. interp. Cheb. pts Ny =16

Cheb. interp. lin. pts Ny =32

• Missing information, yet contained in the original spectral 3D field
• Rendering and interactivity slow down on non regular grid

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Domain decomposition

Slices between partitions of the domain are ignored

Simulation uses non-overlapping domain decomposition
Visualization requires overlapping domain decomposition

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Workflow

HPC platform (Tier-0, Tier-1)

parallel transfer (GridFTP, ...)

data server

Ressources EQUIP@MESO
2 clusters HPC 2*56 TFlops
2*340 CPU Intel SB 2.6 Ghz

2*2720 coeurs - 2*11 To RAM
Réseau InfiniBand FDR

La FLMSN a pour vocation de fédérer et
soutenir les activités de calcul HPC et de
modélisation dans la région lyonnaise.
Elle regroupe 3 centres de calcul :
● le P2CHPD à la Doua,
● le PSMN à Gerland
● le PMCS2I à Ecully.
Elle intègre aussi 2 structures autour de la
modélisation et la simulation
● IXXI institut Rhône-Alpin des systèmes

complexes
● CBP Centre Blaise Pascal
et soutien le réseau Lyon-Calcul

FLMSN.univ-lyon1.fr

Fédération Lyonnaise de Modélisation
et Sciences Numériques

FLMSN

HPC cluster (Tier-2)

NFS
graphic sta-
tions (Tier-2)

user

NFS
or

ssh
tunneling

NX (x2go)/vnc

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Analysis and visualization of stored data

Analysis a posteriori (in parallel)

• Python script with mpi4py
• parallel client server with 2D/3D (matplotlib, mayavi)
• interface with C++ lib using swig
• manipulate tar data file
• analyze with simpler parallel partitioning (1D)
• preserve the same accuracy in the compute and analyze steps

• Still requires disk I/O, data transfert and storage
• Data storage and post-treatment identified as a major challenge

S. Requena, Big Data and HPC, 2013

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

In situ (real computational time) visualization

Remote co-processing during simulation without stored data

Open-source software

• VisIt
• ParaView

Limitations

• run with the same
granularity as the simulation

• affect speed of computation

Requirements

• Preserve spectral accuracy
• Computation of quantities
from simulations variables

• Fast enough
• Act on simulation parameters
(like in experiment)

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Requirements for embedded analysis

Code instrumentation

• add parallel analysis code as independant MPI processes
• use its own time-step
• interact with the simulation every ∼ 100∆t
• can use dedicated nodes
• use a coarse and simpler domain decomposition (operators)
• interpolated on finer regular overlapping grids (visualization)
• can modify the parameters of the simulation (control)

Interface with parallel analysis and visualisation

• Python and matplotlib
• VisIt (libsim)
• allow interactivity and scripting

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Embedded (in-situ) analysis using Python

Common usage of Python for HPC

• simulation driven by Python script
• HPC Python code using mpi4py

Our approach

• No performance degradation of the computation kernel
• Embed a Python interpreter in C++
• Only used for the analysis and control of the simulation

• Simpler domain decomposition for the analysis
• Require 2 groups of MPI processes

• Nk nodes for computation kernel (in C++)
• Na analysis nodes (with Python): Na � Nk

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

NadiaSpectral solver and analysis

NS solver
C++ library
highly parallel compute
and I/O kernel

Analysis
python
parallel lib
numpy, mpi4py

Tools:
git
CMake/CTest
MPI/OpenMP
FFTW, BLAS
SWIG

compute
loop compute

loop compute
loop compute

loop

python
script

python
script

xml
vtk

xml
vtk

control
loop

control
loop

compute nodes control nodes
tar file

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Follow time evolution of flow structures
Explore time evolution at Reh = 2500

5760× 192× 512 modes (∼ 566 millions of modes)

In-situ analysis (embedded to the simulation)

• Run simulation on 144 nodes (128 + 16 nodes)
- 512 MPI procs, 4 MPI processes per node, 4 threads
- 2048 cores (∼ 128 thin nodes)

- 16 MPI procs, 1 MPI processus per node
- 16 cores (∼ 16 fat nodes)

• Analyze every 50 time steps
• Computation of Λ2 criteria during 10 time steps
⇒ does not affect global CPU time

Generate an evolution in time with more than 3000 images
... and interact with the code !

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Sinuous and varicous instabilities

Aopt = 2% Aopt = 4%

at fixed time t

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Visualization of 3D temporal evolution

x

y
U

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Present workflow versus traditional

Comparison of strategies for the simulation 5760× 192× 768 of modes
on 2 084 cores for 512 MPI partitions.

10 analysis at the same physical time interval ∆t.

Traditional usage, 2 048 cores for 512 MPI partitions, 1.4 To of data,
I/ONS solver I/ONS solver I/O. . . NS solver transfer processing

or when sharing cores with analysis,
NS solver NS solver . . . NS solver I/O

Revisited in-situ co-processing analysis, solver on 2 048 cores for 512 MPI
partition, 16 cores for co-processing, 28 Go output data

NS solver NS solver . . . NS solver I/O

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Benefits of the new implementation

• Simplify the analysis
• Get faster developments and tests
• Make overlap I/O and computation, asynchoneous execution and
communications

• Allow in-situ visualization
• but need a more complex environment !

• coupling between C++/python/external tools (VisIt)
• asynchroneous communications
• depend on a large number of external libraries (compatibility)
• make the porting and tuning on HPC platforms more complex
limitation of the module system

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

Outline

1 Challenge

2 HPC and Big Data

3 Implementation and bottleneck

4 Data management, analysis and visualization

5 Conclusion

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

What was achieved for HPC simulations

A suitable development and software environment

• code C++
• BLAS, GSL
• MPI/OpenMP - optimized libraries (e.g. FFTW, MKL)
• cmake, git

• swig interface Python and a C++ library derived from the code
• python, mpi4py, numpy, matplotlib, mayavi, visit ...

Development of a parallel strategy for the code

• revisit parallel strategy of the code
• revisit strategy of data transfer and storage
• revisit strategy for the analysis and visualization

Challenge HPC and Big Data Implementation and bottleneck Data management, analysis and visualization Conclusion

To read mode ...
1 M. Buffat and A. Cadiou and L. Le Penven and Ch. Pera,

In-situ analysis and visualization of massiely parallel computations, (2015), Int.
J. of High Perf. Computing Appl.

2 M. Capuano and A. Cadiou and M. Buffat and L. Le Penven,
DNS of the turbulent flow evolving in a plane channel from the entry to the fully
developed state, (2015), Progress in Turbulence VI.

3 A. Cadiou, M. Buffat, L. Le Penven
Bypass transition at the entrance of a plane channel, (2014), EFMC10,
Copenhagen.

4 A. Cadiou, M. Buffat, L. Le Penven, and J. Montagnier,
DNS of turbulent by-pass transition at the entrance of a plane channel. (2013),
Progress in Turbulence V, p59-64.

5 M. Buffat, L. Le Penven., A. Cadiou, and J. Montagnier,
DNS of bypass transition in entrance channel flow induced by boundary layer
interaction. (2013), European Journal of Mechanics

6 J. Montagnier, A. Cadiou, M. Buffat, L. Le Penven,
Towards petascale spectral simulations for transition analysis in wall bounded
flow, (2012), Int. Journal for Numerical Methods in Fluids

7 M. Buffat, L. Le Penven, and A. Cadiou,
An efficient spectral method based on an orthogonal decomposition of the
velocity for transition analysis in wall bounded flow. (2011), Comput. Fluids.

	Challenge
	Turbulent flows
	DNS
	How do flows become turbulent?
	Why DNS?
	Time and space
	Numerical experiments

	HPC and Big Data
	HPC ?
	Big Data?

	Implementation and bottleneck
	Spectral approximation
	Parallel strategy
	Multi-core architectures
	Hybrid OpenMP/MPI
	Tasks
	NadiaSpectral

	Data management, analysis and visualization
	Bottleneck
	Data storage
	Data processing
	Traditional usage
	Workflow
	Analysis and visualization of stored data
	Python
	NadiaPython
	Visualization

	Conclusion
	Summary
	References

