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Combustion is based on multi-physics process that interact in a chamber

Reactive
mixture

Cl

Injection

Chamber

Turbulent combustion Is an unsteady process
that generate interactions between
velocity, pressure and temperature,
in strong interactions with the boundaries of the system.



Combustion is based on multi-physics process that interact in a chamber

Amplitude growth Limit cycle
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Pressure signal in a burner
(Horton & Price, 1962)

Most of the time, combustion chambers are instable and
we try to minimize the amplitude of the limit cycle.

Small perturbation



Mastering of the pressure perturbations in the surrounding of the chamber is

one the challenges in combustion
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Noise depends on the operating conditions.
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LACOM Bench at ONERA test the influence of outlet conditions on the pressure field.
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Couplings

Pressure field perturbations are due to numerous
couplings that need intense data processing to
understand
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The importance of data decomposition to characterize couplings.

The challenge is to keep pressure
amplitudes in a safe domain.

Understand the transient and limit
phases.

These amplitudes depend on

- the acoustic sources (jet, combustion, vortex, shear layer...),

- the damping mechanisms (acoustic impedance, damping, turbulence),

- and propagation medium (upstream in fresh gases, downstream in burnt gases...)

Data decomposition helps in separating time and space scales.



IC Engine Example

Modal decomposition of the unsteady flow field in compression-ignited combustion chambers
A. Torregrosa, A. Broatch, J. Garcia-Tiscar, J. Gomez-Soriano
Combustion and Flame 188 (2018) 469-482

MichiganTech




Pressure inside the engine has a broadband frequency content.

Resonance peaks
are self-similar along
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Several Power Density modes have to be collected to describe

the spatial pressure evolution
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The signal is not periodic.



A reduced number of POD modes concentrate most of the energy.
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A reduced number of POD modes concentrate most of the energy.




A geometrical modification of the injection reduces
the pressure amplitude fluctuations
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POD used on numerical simulations

POD is efficient when

- a few modes concentrate a large amount of energy

- the energy is distributed over a large range of frequencies
- the signal is not periodic

- the time resolution is low

DMD cannot be used to decompose transition signals
and require a high time resolution.



Limit cycles observed in combustion chamber feature
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Computational investigation on combustion instabilities in a rocket combustor

Acta Astronautica
Volume 127, October—November 2016, Pages 634-643
LeiYuan, Chibing Shen



DMD generates a decomposition of the data based on the frequencies.
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DMD generates a decomposition of the data based on the frequencies.
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light emission
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Peter Schmid, modes

J. Fluid Mech.
(2010)



CESAM Experimental test bench reproduce most of the coupling phenomena

encountered Iin aeronautical combustion chamber
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CESAM Experimental test bench reproduce most of the coupling phenomena

encountered Iin aeronautical combustion chamber
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Multi-variable DMD highlights correlation

between physical guantities

Two strategies are still available.

1 - Multi-variable DMD

Velocity 1

Velocity M
Pressure 1

Pressure P

This gives a unique optimal base for
all the diagnostics

Values have to be normalized to
take into account their volume and
their absolute value.

2 - Extended DMD

Pressure 1
Pressure P
\  Optimal DMD
i base for pressure
Velocity 1
. Bi
Velocity M

The amplitude of velocity modes
projected on the base Bi highlight the
correlation between the two quantities.
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Reconstruction of the acoustic source

The phase between the diagnostics is recovered within the modes.
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Data decomposition for model reduction

” Ll S To create models, the strategy is to
T o \'3 = separate the signal in few modes
| ) and amplitudes :
500 -1
£ MR AR p(t,z) =a1(t)V1(x) + ... + aq(t)Vy(x)
~500 i * i “i\Y) _ r(a.
: l 800 _ At (ai)
-
: 1400 =
0 0.05 0.1 0.15

Time (s)

F. Boudy et al. / Proceedings of the Combustion The prObIem IS tO I_dentlfy the mOdeS
Institute 33 (2011) 1121-1128 that allow to describe the system

whatever the operating point.
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Combustion systems experience bifurcation that
make the modeling complex.
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The system experience two kind of dynamics

depending on the bifurcation parameter.
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Chemiluminescence from flames is recorded for

different values of the bifurcation parameter.

80 images, 6 kHz

L1 =46 cm

(b) Case A, tg

(d) Case B, t1 (e) Case B, ta (f) Case B, t3

The poor quality of the images is due to the high sampling frequency
and the low emission level of the flames.
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Data processing of the experiments

We saw the multivariable DMD : Parametric DMD uses data recorded at different
time but with the same sampling rate.
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Four dominant modes are identified (1 to 4). -



Depending on the bifurcation parameter, the weight of each mode changes.
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Depending on the bifurcation parameter, the weight of each mode changes.
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DMD generates a decomposition of the data based on the frequencies.
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DMD generates a decomposition of the data based on the frequencies.
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Spatial DMD

- Combustion LOx/LHZ2 :
- Chamber pressure 30 bar ;
- External acoustic modulation ;
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Spatial DMD

MASCOTTE (ONERA, Palaiseau)



Spatial DMD

Average light emission from the flames
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Spatial DMD

Since the flow is acoustically modulated from an external source,
pressure sensors detect mainly this frequency
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Spatial DMD

A first multi-variable DMD is performed with the pressures and light emission.
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Spatial DMD

All the dynamics is concentrated on one mode.
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Spatial DMD

DMD is first used to filter the emission field
at the modulation frequency.
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Spatial DMD

The time evolution of one mode is rebuilt
together with the average convective field.
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Spatial DMD

Spatial DMD is performed on two

subdomains of the chamber. E
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Spatial DMD

Close to the injector (A),
two modes (MO and M1) evolve at the same frequency but different wavelength.
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Spatial DMD

One mode is associated to a transverse motion due to the modulation,
the other to a longitudinal modulation generated by the injection lines.

Spatial DMD separated to physical
phenomena taking place at the same
frequency but with different wavelength.
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Conclusion

One of the challenge in combustion is
to predict the pressure evolution Iin
the chamber.

To reduce low order models, we need to
understand the couplings taking place
at different time and space scales.

p(t,x) =a1()Wi(x) + ... + as(t)Wy(x)

dCLi (t)
dat

= F(a;)

| % >

time

Space

modes

Decomposition methods allow to
separate time scales and space
scales then simplify the
understanding and the modeling.

By adapting the decomposition
strategy to the case of study,
relevant information can be
extracted.



