Quest for CMB B-modes: from POLARBEAR, to Simons Array and Observatory, and to LiteBIRD

R. Stompor (APC)

Cosmology has its standard model ...

And it is called ... hot big bang cosmology

LAL, Sept 29, 2017

Are we done then ?

- Three major features of the model,
 - dark matter
 - dark energy
 - source of the initial perturbations ...

are essentially unknown ...

Hasn't inflation been already established ?!

• Well it does explain all it was designed for (flatness, no monopoles, homogeneity, isotropy, etc).

it also explains things which came about only later !

- Indeed, single-field slow-roll inflation looks so far remarkably good:
 - Super-horizon fluctuation
 - Adiabaticity
 - Gaussianity
 - n_s<1
- All as we had asked for !!!
- An outstanding success by many measures.

What else then ?

- Gravitational waves
- Why ?
 - Should be there;
 - If detected,
 - would be a great confirmation of overall picture; and we need that to zoom on the right model.
 - they would provide a unique insight into high energy physics at the energy scales 10¹² higher than accessible in the man-made laboratories (LHC);
 - if not,
 - well then assuming the overall picture would help to reject some of the specific models ...
 - In either case this is our only way at this time to "witness" the first moments of the Universe as we know it (however indirect this may be ...)

How CMB can help with this ? (1)

- CMB light is polarize
 - Thomson scattering
 - Inhomogeneities (so present at the time
- There are two types patterns:
 - a gradient type (E-n
 - a curl-free type (B-r

How CMB can help with this ? (2)

- The scalar perturbations (dominating the total density measurements) generate only E-modes.
- Need vorticity or gravitational waves present at the time of decoupling to generate B-modes.

➔ B-mode pattern on scales larger than the horizon would indicate presence of the primordial gravity waves !

if Gaussian, parity invariant, scale-invariant, etc

How to detect primordial B-modes ?

- High sensitivity → huge data sets (in particular for the ground-based experiments);
- Exquisite control of instrumental effects;
- Removal of non-cosmological contributions, e.g., foregrounds
- Removal of non-primordial B-modes, lensing B-modes, others ?!

What it takes to detect primordial B-modes ?

- Large telescopes furnished with highsensitivity huge arrays of cuting-edge multifrequency detectors;
- Long-term, sustained observational campaigns;
- Advanced data analysis employing high performance numerical algorithms and statistical inference.

Experimental complementarity (1)

Experimental complementarity (2)

LAL, Sept 29, 2017

CMB ground deployment stages

CMB Stage -II

POLARBEAR-I

- Off-axis Gregorian- Dragone
 design
 - Low cross-polarization
 - Large field-of-view
- 3.5' FWHM beams @ 150 GHz
- Single frequency (150GHz)
- •Observing from the Atacama Desert in Chile (~5150m) since 2013
- •3 observational campaigns,
- •2 small patch published (2014, 2017),
- the 3rd, large patch data still analyzed.

POLARBEAR-I: Focal Plane

- 637 dual polarization pixels
- Beam-forming lenslet coupled to each pixel
- 1274
 superconducting transition-edge
 sensor bolometers
- Frequency-domain multiplexing readout (8x)
- Cooled down to 250mK

POLARBEAR Team

First two sets of results (small patch)

2014/15:

Angular power spectrum: ApJ 794, 171 (2014) Deflection power spectrum: PRL 113, 021301 (2014) Galaxy cross-correlation: PRL 112, 131302 (2014) Constraints on cosmic birefringence and primordial magnetic fields: PRD 92, 123509, (2015);

2017:

Updated on angular power spectrum: ApJ to be published, (2017)

Current (post-Stage II) status: ~5-10 uK arcmin

 10^{2} DASI QUIET-Q CBI QUIET-W MAXIPOL BICEP1-3yr **BOOMERanG** pre-2014 ACTPol 10¹ CAPMAP **BK14** WMAP-9yr SPTpol $\ell(\ell+1)C^{
m BB}_\ell/(2\pi)~(\mu{
m K}^2)$ QUaD POLARBEAR 10⁰ AC 10⁻¹ SP7 post-2014 LARBEAR 10⁻² BK: r=0.07 10⁻³⊧ 10⁻⁴ 100 1000 Multipole Moment, ℓ r < 0.07 95% c.l. LAL, Sept 29, 2017 20

CMB Stage -III

How to increase the mapping speed: Simons Array

Multi-chroic pixels: sinuous antennas and TES bolometers with lumped element filters.

PB-2A: 90 & 150 GHz PB-2B: 90 & 150 GHz PB-2C: 220 & 280 GHz

Multi-chroic Focal Planes

Simons Array: Projected sensitivity

10⁻¹

Foreground rejection with multi-frequency Simons Array data

 $\sigma(\Sigma m_v) = 40 \text{ meV}$ w/ DESI BAO, including foreground contamination

 $\sigma(r = 0.1) = 0.006$

Residual computation method: Errard, Stivoli, Stompor. 2011, Phys. Rev. D 84, 063005 Stompor, Errard, Poletti 2016, Phys.Rev.D 94, 083526

CMB Stage -IV

Long term goal: Stage-IV

ULTIMATE GROUND-BASED EXPERIMENT:

- Shallow (high resolution) maps of big parts of the sky
- Deep (low resolution) maps of selected patches
 - → $\sigma(\mathbf{r}) \sim 1 \times 10^{-3}$ (for r=0)
- Multi-frequency (limited by the Earth's atmosphere);
- Broad science goals (lensing, clusters, inflation, etc)
- → $10^5 5 \times 10^5$ detectors;
- → Multiple telescopes (apertures ?!)
- ➔ Multiple sites (?!)
- ➔ Bigger focal planes
- ➔ Operations: ~2025+

More a concept at this time than a project yet.

Simons Observatory - a CMB-Stage IV pathfinder

- US-led, funded by Simons Foundation+ project
 - → spokesperson: M. Devlin (UPenn)
- Combines PB/SA and ACTpol teams;
- To deploy multiple telescopes on the Atacama Desert within the next 5 years;
- Multi-frequency and multi-resolution.
- Stage-IV like science goals but with lower sensitivity. (few sigma on r = 0.01)
- Will test technology and build infrastructure for a fully-fledged Stage IV effort at Atacama.

CMB Stage -IV

SO collaborations

United States

- Carnegie Mellon University
- Columbia University
- Cornell University
- Florida State
- Haverford College
- Johns Hopkins University
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Colorado
- University of Illinois at Urbana-Champaign
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- West Chester University

- 8 Countries
- 45+ Institutions
- 150+ members

Canada

- CITA/Toronto
- Dalhousie University
- Dunlap Institute/Toronto
- McGill University
- University of British Columbia

Chile

- Pontificia Universidad Catolica
- University of Chile

Europe

- APC France
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy

Japan

- KEK
- IPMU

South Africa

Kwazulu-Natal, SA

Atacama desert

Simons Observatory

 Merger of ACT and Polarbear/ Simons Array teams

+new comers

ALMA

CLASS
 CLASS
 Control Venicles
 Control Venicles
 ACT
 Power
 Simons Array
 Power
 Notional Simons Observatory Phase 1
 Notional Pads for Simons Observatory Phase 2 and CMB S4

Sky observability

Foreground + optical survey coverage map

Large Surveys: (1) Access to Large Low Foreground Regions (2) Overlap with optical surveys (3) Overlap with ALMA

SO tentative timeline

- 2016-17: Planning and technology development
- 2016-18: Logistical upgrades to the site infrastructure
- By end of 2020: Construction and installation of telescopes
- By end of 2020: Production of new CMB-S4-type receivers with partially filled focal planes
- 2021 and beyond: Observing!

A thought ...

- Stage-II data sets where
 [≅] 10 x bigger than
 Planck's (at 20th of its budget and 10th of its
 human resources) ...
- Stage-III data sets ≅ 10-30 x (Stage-II data sets)
- Stage-IV data sets ≅ 10-20 x (Stage-III data sets)
- Craving a challenge ?!

And now the space ...

• LiteBIRD

- Focused mission optimized for inflation search
 - large angular scales;
 - High sensitivity;
 - Systematic, astrophysical/instrumental effects control.
- 30' resolution @ 150 GHz
- Broad frequency coverage: 40GHz 400 GHz
- Fast polarization modulation (HWP)
- Advanced scanning strategy
- JAXA-led (PI: M. Hazumi (KEK)) phase A1 study on-going to be completed in Aug 2018
- NASA MO: Phase A completed
- Canada, Europe ?!
- To be launched in 2026/27

Full success defined as • $\sigma(r) < 1 \times 10^{-3}$ (for r=0) • All sky survey (for $2 \le \ell \le 200$)

LAL, Sept 29, 2017

LiteBIRD Phase A1 baseline specifications/operations

Main specifications (Phase-A baseline design)	
ltem	Specification
Orbit	L2 halo orbit
Launch	In 2026-2027, JAXA H3 rocket
Observation (time)	All-sky CMB survey (3 years)
Mass / Power	2.2 t / 2.5 kW
Mission instruments	 Superconducting detector arrays Continuously-rotating half-wave plate (HWP) Crossed-Dragone mirrors (LFT) + small refractive telescope (HFT) 0.1K cooling system (ST/JT/ADR)
Frequencies	34 – 448 GHz (15 bands, 40/402 GHz lowest/highest band center)
Data size	4 GB/day
Sensitivity	2.5 microKarcmin (3 years)
Angular resolution	0.5deg @ 100 GHz (FWHM)
Development Model	DM/EM/FM

All-sky surveys in L2 halo orbit

LiteBIRD: Measurements with 15 Overlapping Bands for Powerful Foreground Control

LiteBIRD Phase-A baseline design

- Japan: LFT, HWP, precoolers, spacecraft, launch, operation
- US: Focal-plane units, Sub-K cooler, cold readout
- Canada: warm readout (DfMUX)

Continuously-

half wave plate

<u>rotating</u>

LiteBIRD summary

- LiteBIRD aims at doing what has to be done from space
 →cost-effective;
- LiteBIRD alone has a potential to revolutionize our understanding of cosmology and physics.

Though 'focused' on B-modes will also:

- Constraint τ;
- Set constraints on non-Gaussianity on large scales;
- Set constraints on other sources of B-modes in the Universe;
- Provide multi-frequency maps of the full sky.
- It is also a perfect match to ground-based efforts promising excellent, extra science from joint analysis
- In Europe: the interest is growing and the status quo is evolving very quickly ... so stay tuned.

Summary

- CMB has been a key in establishing the current standard model of cosmology
- It continues to hold significant potential for the future: stand alone or combined with other surveys
- B-mode polarization provide a window onto the physics at extreme energies and the very first moments of the Universe
- B-mode observations are coming off age with new exciting efforts on the ground and in space are developed and/or planned ...
- Expect new significant results within the next decade ...