

Precise determination of gluon (anti-)shadowing in nulei with heavy-flavour data

HUA-SHENG SHAO

Work with M. Cacciarí, A. Kusína, J.-P. Lansberg and I. Schienbein GDR QCD 2017 IPHT, SACLAY 04 DECEMBER 2017

INTRODUCTION

GDR QCD, SACLAY

COLD NUCLEAR MATTER EFFECTS

Initial state effects

- cnrs
- Modification of parton flux (e.g. shadowing) in nuclear PDF
- Coherent or incoherent energy loss Arleo and Peigne '12; Sharma and Vitev '13
- Colour filtering of intrinsic heavy-quark pair Brodsky and Hoyer '89
- Saturation/small x/coherence effects Ducloué et al. '15; Kharzeev et al. '09; ...

Final state effects

- Coherent energy loss Arleo and Peigne '12
- Break up in the nuclear matter: absorption effect

Gerschel and Hufner '88;Vogt '99

Break up by comoving particles

Ferreiro '15; Capella and Ferreiro '00'05; Gavin and Vogt '90

Cold nuclear matter effects are crucial to understand AA data Reference to disentangle genuine QGP effect in AA collisions

COLD NUCLEAR MATTER EFFECTS

Initial state effects

- Modification of parton flux (e.g. shadowing) in nuclear PDF
- Coherent or incoherent energy loss Arleo and Peigne '12; Sharma and Vitev '13
- Colour filtering of intrinsic heavy-quark pair Brodsky and Hoyer '89
- Saturation/small x/coherence effects Ducloué et al. '15; Kharzeev et al. '09; ...

Final state effects

- Coherent energy loss Arleo and Peigne '12
- Break up in the nuclear matter: absorption effect

Gerschel and Hufner '88; Vogt '99

Break up by comoving particles

Ferreiro '15; Capella and Ferreiro '00'05; Gavin and Vogt '90

Cold nuclear matter effects are crucial to understand AA data Reference to disentangle genuine QGP effect in AA collisions

NUCLEAR PDF

Cross-sections in nuclear collisions are modified

Such a modification can be translated into universal objects: nuclear PDFs (nPDFs)

- For the gluons, only the shadowing depletion is established although its magnitude is still discussed.
- The gluon antishadowing not yet observed although used in many studies; hence, absent in some nPDF fit.
- The gluon EMC effect is even less known, hence the uncertainty there.
- The heavy-quark production at the LHC may help to understand better the gluon density in nuclei.

AUTOMATING OF COMPUTING NPDF EFFECTS

GDR QCD, SACLAY

AN AUTOMATED CODE TO EVALUATE NPDF EFFECTS cnrs

• Partonic scattering cross section fit from pp data with a Crystal Ball function parametrizing $|A_{gg \rightarrow HX}|^2$ Kom, Kulesza, Stirling '11

$$\overline{|\mathcal{A}(k_1k_2 \to \mathcal{H} + k_3)|^2} = \frac{\lambda^2 \kappa s x_1 x_2}{M_{\mathcal{H}}^2} \exp\left(-\kappa \frac{\min(P_T^2, \langle P_T \rangle^2)}{M_{\mathcal{H}}^2}\right) \left(1 + \theta(P_T^2 - \langle P_T \rangle^2) \frac{\kappa}{n} \frac{P_T^2 - \langle P_T \rangle^2}{M_Q^2}\right)^{-n}$$

- It is in principle can be applied to any single-inclusive particle production as long as knowing the fraction of initial partonic luminosity in priori (e.g. gluon-gluon dominance for heavy-flavour production at high-energy collisions).
- Applied to open/hidden charm/beauty hadrons (J/psi,Y, D and B)
- It is a way to evade the quarkonium-production-mechanism controversy (at least to some extent).
- The key point to compute nPDF effects is to have a partonic XS
- It can be validated with state-of-the-art pQCD computations (e.g. FONLL, GM-VFNS)
- Any nPDF set available in LHAPDF 5 or 6 can be used
- Not yet interface to a Glauber model (no centrality and no combination with other CNM effects)

GDR QCD, SACLAY

Lansberg, HSS '17

AN AUTOMATED CODE TO EVALUATE NPDF EFFECTS Lansberg, HSS '17

• Extensive comparisons directly with data

makes sense only when nPDF are the dominant CNM $% \left({{{\mathbf{N}}_{\mathbf{N}}} \right)$

- One can test this hypothesis by comparing our curves with data Global agreement $\stackrel{?}{\Rightarrow}$ only nPDFs matter
- One can go further in the theory-data comparison with reweighting
- Bonus: since the pp yields are fit, the procedure sometimes hints a normalisation issues (bar R_{FB}) which could otherwise be misinterpreted as nuclear suppressions or enhancements.
- It allows one to study different nPDF sets AND the scale uncertainties as well as a better control of the theory uncertainties
- Last but not least: it allows one to study different nPDF sets AND the scale uncertainties as well as a better control of the theory uncertainties
- Disclaimer: it does not provide any insight on the production mechanisms but provides us efficient and controlled (inter/extra)polations of the differential XS in the space (x_1, x_2, y, p_T) .

Lansberg, HSS '17

• Starting with the J/psi

- Starting with the J/psi
- Extremely good fit of the LHCb data (bar may be the 1st bin)

Lansberg, HSS '17

- Starting with the J/psi
- Extremely good fit of the LHCb data (bar may be the 1st bin)
- Not as good at high p_T with CMS ...

Lansberg, HSS '17

- Starting with the J/psi
- Extremely good fit of the LHCb data (bar may be the lst bin)
- Not as good at high p_T with CMS ...
- But very good with ATLAS

9

Lansberg, HSS '17

10⁴

10³

10²

10

10⁰

Prompt J/ψ production at √s=8 TeV LHC

2.0<y<2.5 (<10⁰)

2.5<y<3.0 (<10⁻¹) 3.0<y<3.5 (×10⁻²)

3.5<v<4.0 (×10⁻³) ⊢■⊣

- Starting with the J/psi
- Extremely good fit of the LHCb data (bar may be the lst bin)
- Not as good at high p_T with CMS ...
- But very good with ATLAS

Lansberg, HSS '17

2.0<y<2.5 (<10⁰)

2.5<y<3.0 (×10⁻¹) → 3.0<y<3.5 (×10⁻²)

10⁴

10³

- Lansberg, HSS '17
- Above exercises can be used also for Y, eta_c, D, B etc
- Especially, one can compare with relatively wellunderstood pQCD computations for open charm/beauty
- For example, extremely good fit for D⁰ measured by LHCb

RESULTS FOR PA: D⁰

Lansberg, HSS '17

CNIS

Prompt D⁰ production at vs_{NN}=5.02 TeV LHC

RESULTS FOR PA: J/PSI

Lansberg, HSS '17

• nCTEQ15, EPPS16, EPS09 etc

FIRST STEP TOWARD THE INCLUSION OF HF DATA IN AN NPDF FIT: reweighting

REWEIGHTING FOR HESSIAN PDFS

Giele, Keller '98; Ball et al. '11; Sato, Owens, Prosper '14; Paukkunen, Zurita '14;

1. Convert Hessian error PDFs into replicas

$$f_k = f_0 + \sum_{i}^{N} \frac{f_i^{(+)} - f_i^{(-)}}{2} R_{ki},$$

2. Calculate weights for each replica

$$w_k = \frac{e^{-\frac{1}{2}\chi_k^2/T}}{\frac{1}{N_{\rm rep}} \sum_i^{N_{\rm rep}} e^{-\frac{1}{2}\chi_k^2/T}}, \qquad \chi_k^2 = \sum_j^{N_{\rm data}} \frac{(D_j - T_j^k)^2}{\sigma_j^2}$$

3. Calculate observables with new (reweighted) PDFs

$$\begin{split} \left\langle \mathcal{O} \right\rangle_{\text{new}} &= \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} w_k \mathcal{O}(f_k), \\ \delta \left\langle \mathcal{O} \right\rangle_{\text{new}} &= \sqrt{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} w_k \left(\mathcal{O}(f_k) - \left\langle \mathcal{O} \right\rangle \right)^2}. \end{split}$$

REWEIGHTING FOR HESSIAN PDFS

CNTS

Giele, Keller '98; Ball et al. '11; Sato, Owens, Prosper '14; Paukkunen, Zurita '14;

1. Convert Hessian error PDFs into replicas

USED DATA SETS

Cacciari, Kusina, Lansberg, Schienbein, HSS '17

	D^0	J/ψ	$B \rightarrow J/\psi$	Υ(1 <u>S</u>)
μο	$\sqrt{4M_{D^0}^2 + P_{T,D^0}^2}$	$\sqrt{M_{J/\psi}^2 + P_{T,J/\psi}^2}$	$\sqrt{4M_B^2 + \left(\frac{M_B}{M_{J/\psi}}P_{T,J/\psi}\right)^2}$	$\sqrt{M_{\Upsilon(1S)}^2 + P_{T,\Upsilon(1S)}^2}$
<i>p</i> + <i>p</i> data	LHCb (1)	LHCb (2; 3)	LHCb (2; 3)	ALICE (4), ATLAS (5),
				CMS (6), LHCb (7; 8)
R_{pPb} data	ALICE (9),	ALICE (10; 11),	LHCb (12)	ALICE (13), ATLAS (14),
	LHCb (15)	LHCb (16; 12)		LHCb (17)

- [1] LHCb, R. Aaij et al., JHEP 06, 147 (2017), 1610.02230.
- [2] LHCb, R. Aaij et al., Eur. Phys. J. C71, 1645 (2011), 1103.0423.
- [3] LHCb, R. Aaij et al., JHEP 06, 064 (2013), 1304.6977.
- [4] ALICE, B. B. Abelev et al., Eur. Phys. J. C74, 2974 (2014), 1403.3648.
- [5] ATLAS, G. Aad et al., Phys. Rev. D87, 052004 (2013), 1211.7255.
- [6] CMS, S. Chatrchyan et al., Phys. Lett. B727, 101 (2013), 1303.5900.
- [7] LHCb, R. Aaij et al., Eur. Phys. J. C72, 2025 (2012), 1202.6579.
- [8] LHCb, R. Aaij et al., JHEP 11, 103 (2015), 1509.02372.
- [9] ALICE, B. B. Abelev et al., Phys. Rev. Lett. 113, 232301 (2014), 1405.3452.
- [10] ALICE, J. Adam et al., JHEP 06, 055 (2015), 1503.07179.
- [11] ALICE, B. B. Abelev et al., JHEP 02, 073 (2014), 1308.6726.
- [12] LHCb, R. Aaij et al., (2017), 1706.07122.
- [13] ALICE, B. B. Abelev et al., Phys. Lett. B740, 105 (2015), 1410.2234.
- [14] The ATLAS collaboration, (2015), ATLAS-CONF-2015-050.
- [15] LHCb, R. Aaij et al., (2017), 1707.02750.
- [16] LHCb, R. Aaij et al., JHEP 02, 072 (2014), 1308.6729.
- [17] LHCb, R. Aaij et al., JHEP 07, 094 (2014), 1405.5152.

REWEIGHTING RESULTS: D⁰ AND J/PSI

Cacciari, Kusina, Lansberg, Schienbein, HSS '17

GDR QCD, SACLAY

within

REWEIGHTING RESULTS: B->J/PSI AND Y

Compared to the D and J/ψ cases, 1) the scales uncertainties are smaller, but 2) the data are not yet as precise

GDR QCD, SACLAY

0

y_{cms}(J/ψ)

2 3

-3 -2 -1

123

0

 $y_{cms}(J/\psi)$

2 3

-3

 $y_{cms}(\Upsilon(1S))$

Monday, December 4, 17

R_{pPb}-3 -2

0.8

0.6

 $y_{cms}(\Upsilon(1S))$

0.8

0.6

R_{pPb}

RESULTS OF REWEIGHTED NPDFS Cacciari, Kusina, Lansberg, Schienbein, HSS '17

Global coherence of the data constrains: necessary condition to assume a shadowing-only approach

First clear exp. obser. on gluon shadowing at low Xbj: visible reduction of EPPS16 uncertainties; confirmation of nCTEQ15 extrapolation (reduction after including two similargood extreme cases)

- The scale ambiguity for D and J/psi production is now the dominant uncertanity
- B or non-prompt J/psi are promising if precision of the data can be improved

RESULTS OF REWEIGHTED NPDFS Cacciari, Kusina, Lansberg, Schienbein, HSS '17

Global coherence of the data constrains: necessary condition to assume a shadowing-only approach

First clear exp. obser. on gluon shadowing at low Xbj: visible reduction of EPPS16 uncertainties; confirmation of nCTEQ15 extrapolation (reduction after including two similargood extreme cases)

- The scale ambiguity for D and J/psi production is now the dominant uncertanity
- B or non-prompt J/psi are promising if precision of the data can be improved
- Confirmation of the existence of a gluon anti-shadowing: $R_g(0.05 \le x \le 0.1) > 1$

'E WITH FONLL FOR OPEN CHAKM/BEAU Cacciari, Kusina, Lansberg, Schienbein, HSS '17

EPPS16

VALIDATE WITH FONLL FOR OPEN CHARM/BEAUTY Cacciari, Kusina, Lansberg, Schienbein, HSS '17

nCTEQ15

CONCLUSIONS

Gluon nPDFs at low x are extrapolated: no low x data used in fits

→ need for new constraints at $x \le 10^{-3}$

- We have proposed a quick and robust method to evaluate nPDF effects, which is complementary to full but time consuming pQCD computations
- With standard theory-data comparisons, and with (n)PDF Bayesian reweighting technique, we tested and validated a shadowing-only hypothesis with HF (D, J/psi, B->J/psi,Y) LHC data
- Under this hypothesis, we call for an experimental observation of shadowing and anti-shadowing
- We thoroughly considered the scale uncertainty in pA for the 1st time
- For charm, it induces uncertainties as large as the reweighted nPDF err
- Other HF hadrons as well as the HF leptons could be added to the list as well as other differential data [no drastic change expected with the current data]

CONCLUSIONS

Gluon nPDFs at low x are extrapolated: no low x data used in fits

→ need for new constraints at $x \le 10^{-3}$

- We have proposed a quick and robust method to evaluate nPDF effects, which is complementary to full but time consuming pQCD computations
- With standard theory-data comparisons, and with (n)PDF Bayesian reweighting technique, we tested and validated a shadowing-only hypothesis with HF (D, J/psi, B->J/psi,Y) LHC data
- Under this hypothesis, we call for an experimental observation of shadowing and anti-shadowing
- We thoroughly considered the scale uncertainty in pA for the 1st time
- For charm, it induces uncertainties as large as the reweighted nPDF err
- Other HF hadrons as well as the HF leptons could be added to the list as well as other differential data [no drastic change expected with the current data]

Thank you for your attention !