Heavy-ion perspectives with LHCb

Michael Winn

04.12.2017

QCD opportunities with heavy-ion beams with LHCb LHCb will contribute to many aspects in the future in Run 3/4

QCD matter

- unique heavy-flavour measurements
- potential for low-mass dileptons for medium characterisation, net-charge fluctuations with contact to LQCD
- complementary forward rapidity measurements with PID

QCD phenomena at low-x and high-x in pA

- \rightarrow required for precision on QCD matter
 - forward rapidity, low- Q^2 capabilities: low-x
 - \rightarrow the place to look for saturation
 - emergent phenomena: best acceptance to test dilute-dense regime calculations
 - (anti)-shadowing and/or intrinsic charm in fixed target

Unique service for cosmic ray community

Already available pPb LHCb data: a unique treasure for low-x and much more

request 10 nb⁻¹ per beam direction at 8 TeV: Hadron PID and precision tracking/vertexing down to low- p_T

- \blacktriangleright $\psi(2{\rm S})$ precision close to the one of ${\rm J}/\psi$ in 2013 by 10-40 times higher statistics
- comparison with Drell-Yan
- double charm production and $c\bar{c}(c)$ correlations
- fully reconstructed open beauty and Υ family

 $13.6\pm0.3 \text{ mb}^{-1}$ in *p*Pb 20.8\pm0.5 mb^{-1} in Pb*p* $\approx 10^9$ minimum events in both configurations

Already available fixed-target data: large variety of data samples with large physics potential

noble gas injected in interaction region

improve luminosity measurement by beam imaging J. Instrum. 9 (2014) P12005

- residual gas pressure in beam pipe increased by 2 orders of magnitude: $O(10^{-7})$ mbar
- used for fixed target with proton and Pb beams: LHCb \approx midrapidity rapidity coverage at lower collision energies
- pHe, pAr, pNe, pNe, PbNe and PbAr data samples available
- pAr and pHe O(nb⁻¹) integrated luminosities
- pNe about 5×10^{23} protons on target: about 10 times more protons than pAr sample used for charm studies GDR QCD

Already available data: large soft trigger samples for PbPb and XeXe data

Experiment	2015 PbPb			
ALICE central	150 mio MB evts. (0.02 nb $^{-1}$)			
ALICE muon	0.225 nb^{-1} analysed			
CMS	0.464 nb ⁻¹ analysed			
ATLAS	0.515 nb^{-1} analysed			
LHCb	50 mio MB evts., 50-100% tracking			

modified version in arXiv:1609.01135, references therein.

- 2015 first data taking in most challenging environment for LHCb
- competitive data sample for soft probes and charm in terms of event statistics in unique acceptance
- very soft trigger requirement: Equivalent amount of QED & photo-induced for dimuons events written on tape!
- XeXe in 2016: about 0.4 μb⁻¹ with improved triggers for photo-induced processes

GDR QCD Michael Winn, LHCb Collaboration

LHCb upgrade

L = 2 × 10³³ cm⁻²s⁻¹: ≈ 5 collisions on average per beam crossing instead of 1 now

- triggerless readout and full software trigger at 30 MHz
- p–Pb and p–A fixed target multiplicities below pp average conditions
- tracker with larger granularity

LHCb upgrade

- Velo: from strip to pixel (55 \times 55 μ m²): Velo TDR
- ► T1-T3: Outer/Inner Tracker → Scintillating Fibre Tracker
- ▶ 200 μ m(InnerTracker)/5.25 mm (OuterTracker) \rightarrow 270 μ m pitch, fibres extend from innermost to outermost radius Tracker TDR
- ▶ TT → UT: 10cm×183 μ m → 10/5cm×190/95 μ m Tracker TDR
- ► evaluation with full simulation ongoing: to be released in course of workshop series → will define priority collider vs. fixed target
- improved tracking efficiency below p < 4 GeV/c via magnet stations on the side of dipole under study

pPb with LHCb

- ▶ at HL-LHC workshop: J. Jowett 500-1000 nb⁻¹ for ATLAS/CMS at full energy possible within one heavy-ion run
- unique chance with LHCb to explore down to $x = 10^{-6}$ thanks to forward acceptance
 - \rightarrow best place to look for saturation
 - \rightarrow lower x-reach than planned electron-ion collider
- ▶ required to **understand** nuclear effects in **charm/beauty** observables in pPb and in PbPb \rightarrow needed to lift ambiguity in model comparisons
- ▶ In addition: best tool to bridge low multiplicity pp towards PbPb

pPb: new probes for low-x

• Drell-Yan from Z down to J/ψ :

 \rightarrow theoretically clean, experimentally cleanest in LHCb due to precision vertex detector and displacement of heavy-flavour background due to boost

- \blacktriangleright other observables under investigation $\gamma+jet,$ at leading order directly sensitive to gluons
- larger luminosity required: currently statistically limited measurements as χ_C , η_c and beauty measurements will help to understand PbPb
- ▶ would require about 450 nb⁻¹ for DY-measurement à la pp

LHCb upgrade and AA collider

right: JHEP 07 (2014) 094

- considerations depending on ongoing simulation studies with upgraded detector
- studies ongoing for Λ_C , Υ

LHCb fixed target

- noble gas injections with pressures 10⁻⁶-10⁻⁷ mbar introduced for improved luminosity measurements
- used as internal gas target for p-gas and ion-gas collisions: He(A=4), Ne(A=20), Ar(A=40) used so far
- LHCb acceptance reaches close to midrapidity
- first preliminary measurements in pAr and in pHe collisions from Run2

LHCb fixed target: nucleus-nucleus in Run3/4

	System \ centrality	60 - 100%	50 - 60%	40 - 50%	30 - 40%	20 - 30%	10 - 20 %	0 - 10%	(Day
PS LHC	PbNe - 71 GeV	108.6	254.4	392.5	588.0	814.5	1086.0	1494.9	ed on p
	PbAr - 71 GeV	123.6	308.8	496.5	806.6	1228.3	1711.9	2372.7	POS-LF
	PbKr – 71 GeV	196.9	533.6	919.1	1451.2	2205.5	2986.6	4084.3	10-7340
s	PbPb - 17 GeV	124.2	331.6	605.9	919.6	1338.7	2035.8	2980.5	Ě

- similar charged particle multiplicity as at SPS: similar energy densities
- measurements will profit from upgraded detector
- maximal occupancy in central PbAr about factor 5 below central PbPb

 preferred running strategy during ion beams to be defined after
 detailed simulations inputs
- unique chance for open charm and yet missing hidden charm (χ_c) in that energy regime and density regime at \approx midrapidity
- ▶ work ongoing for storage cell: larger areal density by up to 2 orders of magnitude in Run 3/4, not limited to noble gases → targeting LS2

LHCb fixed target: proton-nucleus in Run3/4

- unique physics motivation and necessary basis for nucleus-nucleus first preliminary measurements now LHCb-CONF-2017-001; pAr collisions with 685 non-colliding bunches: 4·10²² protons on target, overall data (17h) : 500 J/ψ, 6500 D⁰
- unique chance for open charm and yet hidden charm including \(\chi_C\) in that energy regime: clarify break-up mechanisms limiting precise understanding
- physics programme profitting from internal unpolarised gas target upgrade via storage cell

GDR QCD Michael Winn, LHCb Collaboration

Yet uncharted major potentials

 intermediate-mass dileptons: precision temperature measurement above the φ-mass via thermal radiation to be checked also in high-multiplicity pPb, pp

masses below to be seen, current minimal p $_{\mu}$ with ID 3GeV/c: p_T = 200, 400 (η =4.0,2.5)

- net-baryon fluctuations: contact to LQCD and trace remnants of chiral phase transition with low-p_T at moderate p and solid state detectors currently p > 10 GeV/c via RICH-veto K,π, active from 17 GeV/c on
- ▶ for LS3 addition of TOF (TORCH) option in discussion
- interesting both for fixed-target and collider

Cosmic ray physics: motivation for a pO run

Haungs et al., JoP Conf. Ser. 632 (2015) 012011

- High-energy cosmic rays are measured through induced extensive air showers
 - Energy inferred from number of electrons and gammas
 - Mass inferred from number of muons (tracers of hadronic cascade)
- · Air shower development shaped by forward hadron production
 - Phenomenological hadronic interaction models (EPOS, ...) need collider data for refinement
 - Inferred cosmic-ray mass composition limited by model accuracy
- p+O runs: lab measurement of first interaction in a 10⁸ GeV air shower

Cosmic ray physics: required statistics

- Why pO?
 - pO collisions reproduce first interaction in 108 GeV air showers
 - All models tune to pp, use Glauber theory to compute pO and pN
 - Test Glauber theory by comparing pO with pp
 - Why oxygen, not nitrogen? oxygen already used as support gas for lead
- What to measure?
 - -π, К, р
 - Inclusive production, double-differential X-section (eta, pT)
 - Multiplicity distribution
 - Open and hidden charm
 - · Decays produce high-energy muons (IceCube background)
- Required luminosity
 - 100M events, about Lint = 0.2 nb-1
- · Forward detectors especially important
 - LHCb: full hadron PID for 2 < eta < 5
 - LHCf: gamma and neutrons at eta > 8.4
 - CASTOR: EM calorimeter at 5.2 < eta < 6.5

Summary

- Very rich opportunities
- ▶ low-x physics very strong LHCb point: requires large pPb luminosity
- nucleus-nucleus fixed-target and collider for QCD matter: unique heavy-flavour opportunities addressing deconfinement at forward rapidity and much more

 \rightarrow estimate Run 3/Run 4 occupancy limits in PbPb and Pb-Ar/Ne ongoing, will define running strategy

 cosmic ray physics: unique opportunity to clarify with soft particle production in pO collider mode longstanding key problem

Bottleneck for a field: Inferring the mass

(InA) Fe data (optical) to test astrophysical theories ---- SNR&ankle 3 SNR&AGN Ν Hypernovae - GRB (cannon ball) - e⁺e⁻ dip 1 mixed, large E mixed, small Emay Large uncertainties (so far) 0 -1 10¹⁹ 10¹⁶ 10¹⁷ 10¹⁸ 10¹⁵ 10²⁰ E [eV]

Mass composition differs greatly in astrophysical theories of CR origin, but accuracy of measurement poor because of uncertainties in air shower models

Example: Two leading experiments differ above the knee, likely because of model

- IceTop/IceCube: u-measurement interpreted with SIBYLL 2.1, OGSJet01
- KASCADE-Grande: u-measurement interpreted with EPOS-LHC, SIBYLL 2.3, QGSJet-II.04

GDR QCD Michael Winn, LHCb Collaboration

Cosmic ray observables

No point sources found

Weakly discriminating

Weakly discriminating

Strongly discriminating

Directions

.

.

Energy spectrum Small uncertainties

Mass composition

Muon Puzzle

Muon deficit in simulated air showers for cosmic rays above 10⁸ GeV (KASCADE-Grande further finds problems with muon-LDF and muon attenuation)

Relevant particles to investigate

Observable muons in air shower experiments Maris et al. (NA61 collab.) Proc. ICRC 2009,

- Are of 10 100 GeV energies, not collimated with the shower axis
 - · Interesting parent particles: pions, kaons, nucleons
- Direct (prompt) muon production not relevant for Muon Puzzle, but important background for IceCube

Current detector

schematic side view of current detector from Tracker TDR

Upgrade detector

schematic side view of upgraded detector in Run3/4 Tracker TDR

Fixed-target upgrade

- unpolarised gas target during LS2 under consideration
- discussions with accelerator started and well advancing
- storage cell attached to VELO upstream
- higher areal density and well-defined interaction region of about 20 cm length
- possibility to largely increase the instantaneous luminosity and to choose other than noble gases e.g. hydrogen
- an upgrade study is ongoing