

The Electron-Ion Collider:

Toward the next QCD frontier

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél.: +33 1 69 15 73 40 Fax: +33 1 69 15 64 70 http://ipnweb.in2p3.fr

Raphaël Dupré

IPN Orsay CNRS-IN2P3 Université Paris-Sud

The EIC project

- Project to build a multi-GeV electron-ion collider
 - Polarized electrons ~10 GeV
 - Polarized protons and light nuclei ~100 GeV
 - Heavy ions up to lead ~100 GeV
- Community formed for about a decade now

- White paper published in 2012: arXiv:1212.1701.v3
- American NSAC LRP recommendation
 - "We recommend a high-energy highluminosity polarized Electron Ion Collider as the highest priority for new facility construction following the completion of FRIB."

So what can we do? Why an EIC?

In the description of the nucleon

- The low and high x limits are still unknown
 - EIC will study the saturation effect at low x g
- The proton spin composition
 - EIC will help understand:
 The orbital angular momentum of quarks
 The contribution from gluons

- The nPDF and nFF are not so well known
 - EIC will scan nuclear PDFs on a wide x range
 - EIC will measure nuclear FF
- N-N interaction
 - With EIC we will be able to correlate the nuclear and parton levels

The Gluon Saturation

- Saturation occurs when recombination diagrams become relevant
 - It is the domain of collective effects and where QCD becomes non linear
 - It is probed only at very high energies, but can be enhanced in nuclei
 - Its presence has been hinted in many heavy ion experiments
 - EIC offers the best situation for discovery and study
 - High energy lepton scattering is much easier to theoretically describe

The nucleon structure

There are many more structure functions

- In the recent years, focus was on GPDs and TMDs
- They allow to decompose the contributions to the spin of the proton
 - Ji sum rule links the GPDs to the orbital angular momentum
 - Necessitate to integrate over x
- Give access to the proton tomography
 - Only intermediate x measured today
 - EIC will explore the low x region

Gluons in the nucleon

Gluon GPDs can be accessed

- Using exclusive J/Psi production
- Do the gluons spatially extend more than quarks at a given momentum?

Gluons impact on the proton spin

- Completely unknown today
- The gluon contribution to the proton spin could be very large
- Accessed through polarized inclusive and semi-inclusive hadron production

Looking into the neutron

Why studying the neutron in detail?

- It gives access to the u/d flavor separation
 - To study charge symmetry breaking in QCD matter
 - It also impacts neutrino physics
- Using deuteron and helium-3
 - Both are going to be available in the EIC
 - (Deuterium proton) is the best neutron target we have today
 - The same can be done with polarized helium-3 to obtain a polarized neutron beam
- Allows to do all the same physics as for protons

Nuclear physics at EIC

The nucleus is much more than a sum of nucleons

- Nuclear PDFs proved that a long time ago
- We are unable to understand most of the nuclear quark structure

• EIC will also be a machine for nuclear physics

- Precise measurement of nPDFs: shadowing, EIC ...
- Shadowing has never been formally observed!
- These measurements are crucial to understand the nucleus
- But also to interpret heavy ion collision data: pA & AA

Parton Energy Loss in CNM

Parton Energy Loss

- Widely used to describe hadron suppression in nuclear material (Cold or hot like in QGP)
- It gives access to the properties of the medium
 - In particular gluon density
- Wide variety of calculations are available spreading over an order of magnitude

Cold nuclear matter is a perfect benchmark

- EIC will offer energies comparable to RHIC and LHC
- In particular with access to heavy quarks

Centrality measurement

An example of one of many ongoing studies

- Lot of work to determine the physics channel of interest and drive the design of the machine
- Centrality measurements are now standard in A-A
 - They get more and more evolved
 - There are problems in p-A however
 - Hinting to similar issues with the unknown case of e-A
- Monte-Carlo developments to inform detector design is starting now
 - Use old data from Fermi lab to calibrate the simulation
 - Use the expertise from AA community

What EIC do we need?

EIC in the International Landscape

- Improves on previous machines by an order of magnitude in energy and luminosity
- Adds nuclear targets, together with polarized electrons and nucleons capabilities

The BNL and the JLab projects

- Today, there are two competing designs
 - Jefferson Lab electron machine reused with a new heavy ion accelerator
 - BNL heavy ion machine reused with a new electron machine
- Both are very similar with small variations
 - The JLab 8 shaped designs helps with polarization
 - Good for proton spin studies
 - The BNL facility offers slightly more energy
 - More suitable for saturation studies
- Development of the physics case will help settle the matter

Detector R&D Opportunities

Many activities around detector R&D

- A new accelerator is the occasion to start completely new detector R&D programs
- Funding was made available by the American DOE (through BNL)

Argonne National Lab detector as an example

- A third detector project
- All in on silicon R&D
- Perform all particle ID with TOF
 - 10 ps resolution goal

Calorimetry R&D in IPN Orsay

- Active PbWO crystal recovery
- Using UV light to recover radiation damage during data tacking

• And much more...

Micromegas R&D in SphN

– ...

Time Line of the Project

- 2009 INT 8 weeks program to define the physics goal
- 2012 White paper summarizing the key measurements
- 2015 Recommendation by DOE NSAC in their Long Range Plan
- 2017 (American) National Science Academy review
- 2018 Expected "CD0": official administrative start of project
- ~2019-2020 Decision on the site (JLab or BNL)
- ~2022-2023 Start of construction
- ~2027 First beam for physics!

EIC User Group

Europe

32%

Africa

South America

2%

With beam expected in about 10 years

- It is now time to organize! We created a user group
- Physics and detector groups are starting to form

Strong European involvement

General UG meeting in Trieste past Summer

Already 700 physicists 100 institutions

Oceania

1%

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

Summary

- The next big machine for QCD will be the Electron-Ion Collider
 - Two accelerator designs are being developed in JLab and BNL
- Many physics topics will be explored
 - Measure in detail the partonic structure of the nuclei
 - Access to the low x tomography of the nucleon
 - Necessary to access precisely quark orbital angular momentum
 - EIC will be a machine to measure the gluons in the nucleon
 - Polarized PDFs and overall contribution to the nucleon spin
 - Access gluon saturation in nuclei at low x
 - Parton energy loss and fragmentation in cold nuclear matter
- The physics community is starting to organize
 - Detector projects are starting to be proposed
 - Detector R&D programs are also starting in many institutions
- These activities regroup the heavy ion and lepton scattering communities worldwide
 - Hopefully, it will trigger a similar effect in France!