Hadronic light-by-light scattering contribution to the anomalous moment of the muon from lattice QCD

Antoine Gérardin

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

December 6, 2017 - GDR QCD

Anomalous magnetic moment of the muon : $(g-2)_{\mu}$

Magnetic moment
$$ec{\mu}=giggl(rac{Qe}{2m}iggr)ec{s}$$

Anomalous magnetic moment of the muon : $(g-2)_{\mu}$

Magnetic moment
$$ec{\mu}=g\left(rac{Qe}{2m}
ight)ec{s}$$

• Classical result :
$$g = 2$$
 - Quantum field theory : $a_{\mu} = \frac{g-2}{2} \neq 0$

Magnetic moment
$$ec{\mu}=giggl(rac{Qe}{2m}iggr)ec{s}$$

• Classical result :
$$g = 2$$
 - Quantum field theory : $a_{\mu} = \frac{g-2}{2} \neq 0$

Magnetic moment
$$ec{\mu}=giggl(rac{Qe}{2m}iggr)ec{s}$$

• Classical result :
$$g = 2$$
 - Quantum field theory : $a_{\mu} = \frac{g-2}{2} \neq 0$

• Experimental value : $a_{\mu} = (116\ 592\ 089 \pm 63) \times 10^{-11}$ [Bennett et al. '06]

 $(g-2)_{\mu}$: present status

- Experimental value : $a_{\mu} = (116\ 592\ 089 \pm 63) \times 10^{-11}$ [Bennett et al. '06]
- Theory :

Contribution	$a_{\mu} \times 10^{11}$	
– QED (leptons, $5^{\rm th}$ order)	$116\ 584\ 718.846 \pm 0.037$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. '13]
- Strong contributions		
HVP (LO)	$6\ 869.9 \pm 42.1$	[Jegerlehner '15]
HVP (NLO)	-98 ± 1	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	102 ± 39	[Jegerlehner '15, Nyffeler '09]
Total (theory)	$116 591 811 \pm 62$	

 $(g-2)_{\mu}$: present status

- Experimental value : $a_{\mu} = (116\ 592\ 089 \pm 63) \times 10^{-11}$ [Bennett et al. '06]
- Theory :

Contribution	$a_{\mu} \times 10^{11}$	
– QED (leptons, 5^{th} order)	$116\ 584\ 718.846 \pm 0.037$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. '13]
- Strong contributions		
HVP (LO)	$6\ 869.9 \pm 42.1$	[Jegerlehner '15]
HVP (NLO)	-98 ± 1	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	102 ± 39	[Jegerlehner '15, Nyffeler '09]
Total (theory)	$116 591 811 \pm 62$	

Hadronic Vacuum Polarisation (HVP, α^2) :

Antoine Gérardin

 $(g-2)_{\mu}$: present status

- Experimental value : $a_{\mu} = (116\ 592\ 089 \pm 63) \times 10^{-11}$ [Bennett et al. '06]
- Theory :

Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, 5^{th} order)	116 584 718.846 ± 0.037	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. '13]
- Strong contributions		
HVP (LO)	$6\ 869.9 \pm 42.1$	[Jegerlehner '15]
HVP (NLO)	-98 ± 1	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	102 ± 39	[Jegerlehner '15, Nyffeler '09]
Total (theory)	$116 591 811 \pm 62$	

- $\Delta a_{\mu} = a_{\mu}^{\exp} a_{\mu}^{th} = 278 \times 10^{11} \quad \rightarrow \quad \sim 3 4 \sigma$ discrepancy between experiment and theory
- Future experiments at Fermilab and J-PARC : reduction of the error by a factor of 4 $\rightarrow \delta a_{\mu} = 16 \times 10^{-11}$
- Theory error is dominated by hadronic contributions

Hadronic Light-by-Light scattering (HLbL) : model calculations

[extracted from A. Nyffeler's slide]

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114 ± 10	_	114±13	99 \pm 16
axial vectors	$2.5{\pm}1.0$	$1.7{\pm}1.7$	_	22±5	_	15 ± 10	22 ± 5
scalars	$-6.8{\pm}2.0$	_	_	_	_	_7±7	-7±2
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	_	_	_	-19 ± 19	$-19{\pm}13$
π, K loops +subl. N _C	_	_	_	0±10	_	_	_
quark loops	21±3	$9.7{\pm}11.1$	—	—	—	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136±25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

- Pseudoscalar pole contributions most important, but other contributions are not negligible
- Error are hard to estimate (model calculations)
- Need transition form factors as input parameters

Antoine Gérardin

Conclusion and perspectives

HLbL from Lattice QCD

• Long term project : direct lattice calculation

 \hookrightarrow only one collaboration has published results so far [Blum et. al 14', 16'] \hookrightarrow difficult calculation (4-pt correlation function), work in progress in Mainz

• Pion-pole contribution

- \hookrightarrow Dominant contribution to the HLbL scattering in $(g-2)_{\mu}$
- $\hookrightarrow \mathsf{First-principle}\ \mathsf{estimate}$
- \hookrightarrow Other pseudoscalars (η and $\eta')$ can be included in a similar way

• Hadronic Light-by-Light forward scattering amplitudes

- \hookrightarrow The previous method works only for stable particles
- \hookrightarrow Full HLbL amplitudes contain more info than just a_{μ}
- \hookrightarrow Can be used to test the model (saturation)
- \hookrightarrow Extract information about single-meson transition form factor

Antoine Gérardin

[Jegerlehner & Nyffeler '09]

$$a_{\mu}^{\text{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2}, 0) + w_{2}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2}, 0)$$

$$\rightarrow \tau = \cos(\theta)$$
 with $Q_1 \cdot Q_2 = Q_1 Q_2 \cos(\theta)$

 \rightarrow Product of one single-virtual and one double-virtual transition form factors

 $ightarrow w_{1,2}(Q_1,Q_2, au)$ are known model-independent weight functions

 \rightarrow Weight functions are concentrated at small momenta below 1 ${\rm GeV}$ (here for $\tau=-0.5)$

To estimate the pion-pole contribution we need :

- The single and double virtual transition form factor for arbitrary space-like virtualities
- In the kinematical range $Q^2 \in [0-2] \ {
 m GeV}^2$

Present status :

- Experimental results available for the single-virtual form factor
- And only for relatively large virtualities $Q^2>0.6~{\rm GeV}^2$
- The theory imposes strong constraints for the normalisation and the asymptotic behavior of the TFF \hookrightarrow Anomaly constraint $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$
 - \hookrightarrow Brodsky-Lepage, OPE for large virtualities
- \hookrightarrow Most evaluations of the pion-pole contribution are therefore based on phenomenological models
- \hookrightarrow Systematic errors are difficult to estimate

Lattice QCD is particularly well suited to compute the form factor in the energy range relevant to g-2 !

Antoine Gérardin

Lattice QCD : sources of systematic error

- ▶ Lattice QCD is not a model : specific regularisation of the theory adapted to numerical simulations
- \blacktriangleright However there are systematic errors that we need to understand :
 - 1) We used $N_f = 2$ simulations (Only u and d quarks are dynamical)
 - 2) Finite lattice spacing : discretisation errors

ightarrow 3 lattice spacings ($a=0.075, 0.065, 0.048~{
m fm}$) : extrapolation to the continuum limit a=0

3) Unphysical quark masses

ightarrow Different simulations with pion mass in the range [190-440] MeV : extrapolation to $m_\pi=m_\pi^{
m exp}$

4) Finite volume

Antoine Gérardin 9

Next step : extrapolate the results to the physical point

- Use phenomenological models to describe the lattice data
- Extrapolate the model parameters to the continuum and chiral limit
- ► LMD model (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

Antoine Gérardin

Final results

Final results : blue curves (the model satisfies all the theoretical constraint)

[Jegerlehner & Nyffeler '09]

$$a_{\mu}^{\text{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2}, 0) + w_{2}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2}, 0)$$

 $\rightarrow w_{1,2}(Q_1, Q_2, \tau)$ are some model-independent weight functions (concentrated at small momenta below 1 GeV)

[Jegerlehner & Nyffeler '09]

$$a_{\mu}^{\text{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2}, 0) + w_{2}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2}, 0)$$

 $\rightarrow w_{1,2}(Q_1, Q_2, \tau)$ are some model-independent weight functions (concentrated at small momenta below 1 GeV)

Model	$a_{\mu}^{\mathrm{HLbL};\pi^{0}} \times 10^{11}$
LMD (this work)	68.2(7.4)
LMD+V (this work)	65.0(8.3)
VMD (theory)	57.0
LMD (theory)	73.7
LMD+V (theory + phenomenology)	62.9

 \rightarrow Most model calculations yield results in the range $a_{\mu}^{\rm HLbL;\pi^0} = (50-80)\times 10^{-11}$

- \rightarrow We are currently working on the $N_f = 2 + 1$ result?
- \rightarrow Contributions from other particles/resonances ?

 $a_{\mu:\text{LMD+V}}^{\text{HLbL};\pi^0} = (65.0 \pm 8.3) \times 10^{-11}$

Light-by-light forward scattering amplitudes

• Forward scattering amplitudes $M_{\lambda_3\lambda_4\lambda_1\lambda_2}$: $\gamma^*(\lambda_1, q_1) \ \gamma^*(\lambda_2, q_2) \rightarrow \gamma^*(\lambda_3, q_1) \ \gamma^*(\lambda_4, q_2)$

$$\mathcal{M}_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}\lambda_{1}\lambda_{2}} = \mathcal{M}_{\mu\nu\rho\sigma} \ \epsilon^{*\mu}(\lambda_{1}^{\prime}) \ \epsilon^{*\nu}(\lambda_{2}^{\prime}) \ \epsilon^{\rho}(\lambda_{1}) \ \epsilon^{\sigma}(\lambda_{2})$$

$$\stackrel{\text{NM}_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}\lambda_{1}\lambda_{2}} = \mathcal{M}_{\mu\nu\rho\sigma} \ \epsilon^{*\mu}(\lambda_{1}^{\prime}) \ \epsilon^{*\nu}(\lambda_{2}^{\prime}) \ \epsilon^{\rho}(\lambda_{1}) \ \epsilon^{\sigma}(\lambda_{2})$$

$$\stackrel{\text{Photons virtualities}}{\sim} : Q_{1}^{2} = -q_{1}^{2} > 0 \text{ and } Q_{2}^{2} = -q_{2}^{2} > 0$$

$$\stackrel{\text{Crossing-symmetric variable}}{\sim} : \nu = q_{1} \cdot q_{2}$$

• Using parity and time invariance : only 8 independent amplitudes

$$\begin{aligned} \left(\mathcal{M}_{++,++} + \mathcal{M}_{+-,+-} \right), \ \mathcal{M}_{++,--}, \ \mathcal{M}_{00,00}, \ \mathcal{M}_{+0,+0}, \ \mathcal{M}_{0+,0+}, \ \left(\mathcal{M}_{++,00} + \mathcal{M}_{0+,-0} \right), \\ \left(\mathcal{M}_{++,++} - \mathcal{M}_{+-,+-} \right), \ \left(\mathcal{M}_{++,00} - \mathcal{M}_{0+,-0} \right) \end{aligned}$$

- \hookrightarrow Either even or odd with respect to ν
- \hookrightarrow The eight amplitudes have been computed on the lattice for different values of u, Q_1^2, Q_2^2
- Relate the forward amplitudes to two-photon fusion cross sections using the optical theorem [Pascalutsa et. al '12]
 - \hookrightarrow Eight independent dispersion relations for \mathcal{M}_{TT} , \mathcal{M}_{TT}^t , \mathcal{M}_{TT}^a , \mathcal{M}_{TL} , \mathcal{M}_{LT} , \mathcal{M}_{TL}^a , \mathcal{M}_{TL}^t , \mathcal{M}_{TL

Antoine Gérardin

 $\gamma^*(\lambda_2,q_2)$ AN

Dispersion relations

1) Optical theorem

2) Dispersion relations [Pascalutsa et. al '12]

<u>Once-subtracted sum rules</u>: crossing-symmetric variable $\nu = q_1 \cdot q_2$ $\mathcal{M}_{\text{even}}(\nu) = \mathcal{M}_{\text{even}}(0) + \frac{2\nu^2}{\pi} \int_{\nu_0}^{\infty} d\nu' \frac{1}{\nu'(\nu'^2 - \nu^2 - i\epsilon)} W_{\text{even}}(\nu')$

$$\mathcal{M}_{\rm odd}(\nu) = \nu \mathcal{M}_{\rm odd}(\nu) + \frac{2\nu^3}{\pi} \int_{\nu_0}^{\infty} d\nu' \frac{1}{\nu'(\nu'^2 - \nu^2 - i\epsilon)} W_{\rm odd}(\nu')$$

- 3) Higher mass singularities are suppressed with ν^2 :
 - \hookrightarrow Only a few states X are necessary to saturate the sum rules and reproduce the lattice data

- $\begin{array}{ll} \hookrightarrow \text{ Main contribution is expected from mesons :} \\ \text{Pseudoscalars } (0^{-+}) & \text{Axial-vectors } (1^{++}) \\ \text{Scalar } (0^{++}) & \text{Tensors } (2^{++}) \end{array}$
- \hookrightarrow Input : transition form factors

LbL forward scattering amplitudes

Description of the lattice data using phenomenology

 \rightarrow For each of the eight amplitudes, we have a dispersion relation :

$$\overline{\mathcal{M}}_{\alpha}(\nu) = \frac{4\nu^2}{\pi} \int_{\nu_0}^{\infty} d\nu' \, \frac{\sqrt{X'} \, \sigma_{\alpha}/\tau_{\alpha}(\nu')}{\nu'(\nu'^2 - \nu^2 - i\epsilon)}$$

 \hookrightarrow 4-pt correlation function

 $\gamma^*(\lambda_1, q_1) + \gamma^*(\lambda_2, q_2) \to \mathcal{X}(p_{\mathcal{X}})$ fusion cross sections

- \hookrightarrow Consider only one particle in each channel
- $\hookrightarrow N_f = 2$: no η meson
- \hookrightarrow lsospin symmetry + large- N_c approximation : isovector only with an overall factor 34/9

	Isovector	lsoscalar	lsoscalar
0^{-+}	π	η'	η
0^{++}	$a_0(980)$	$f_0(980)$	$f_0(600)$
1++	$a_1(1260)$	$f_1(1285)$	$f_1(1420)$
2^{++}	$a_2(1320)$	$f_2(1270)$	$f_2'(1525)$

Assumptions on form factors

- Pseudoscalar meson : Lattice QCD (Previous calculation)
- Other particles (resonances) : Only measurement for isoscalar, single virtual TFF so far. And at rather large virtualities.
 - 1) <u>Scalar mesons</u>

$$\frac{F_{S\gamma^*\gamma^*}^T(Q_1^2, Q_2^2)}{F_{S\gamma^*\gamma^*}^T(0, 0)} = \frac{1}{(1 + Q_1^2/M_S^2)(1 + Q_2^2/M_S^2)}$$

2) Tensor mesons

 $\hookrightarrow \text{Amplitudes are described by four form factors } F^{(\Lambda)}_{\mathcal{T}\gamma^*\gamma^*}(Q_1^2,Q_2^2) \text{ with } \Lambda = (0,T), \ (0,L), \ 1, \ 2$

 \hookrightarrow data are compatible with a dipole form factor [Danilkin '16]

$$\frac{F_{\mathcal{T}\gamma^*\gamma^*}^{(\Lambda)}(Q_1^2, Q_2^2)}{F_{\mathcal{T}\gamma^*\gamma^*}^{(\Lambda)}(0, 0)} = \frac{1}{(1 + Q_1^2/M_{T,(\Lambda)}^2)^2(1 + Q_2^2/M_{T,(\Lambda)}^2)^2}$$

- 3) <u>Axial mesons</u> : Dipole form factor based on a quark model parametrisation : M_A
- Scalar QED

 $\gamma^* \gamma^* \to \pi^+ \pi^-$ evaluated using scalar QED dressed with monopole form factors (M = lattice tho mass)

Antoine Gérardin

Introduction

I he pion-pole contribution

LbL forward scattering amplitudes

Preliminary results : F7 - dependance on u and Q_{21}^2

- Each plot correspond to a fixed Q_1^2
- Different colours correspond to different values of $\nu = Q_1^2 \cdot Q_2^2$

Antoine Gérardin

LbL forward scattering amplitudes

Preliminary results : F7 - contributions from different channels

Antoine Gérardin

Preliminary results : monopole and dipole masses

$$F_X(Q_1^2, Q_2^2) = \frac{\frac{\text{Monopole FF}}{F_X(0, 0)}}{(1 + Q_1^2 / \Lambda_X^2) (1 + Q_2^2 / \Lambda_X^2)} \quad , \quad F_X(Q_1^2, Q_2^2) = \frac{\frac{\text{Dipole FF}}{F_X(0, 0)}}{(1 + Q_1^2 / \Lambda_X^2)^2 (1 + Q_2^2 / \Lambda_X^2)^2}$$

• Global fit of the eight amplitudes

	$M_S \; [\text{GeV}]$	$M_A \; [\text{GeV}]$	$M_T^{(2)}$ [GeV]	$M_T^{(0,T)}$ [GeV]	$M_T^{(1)}$ [GeV]	$M_T^{(0,L)}$ [GeV]	$\chi^2/d.o.f$
E5	1.38(11)	1.26(10)	1.93(3)	2.24(5)	2.36(4)	0.60(10)	4.22
F6	1.12(14)	1.44(5)	1.66(9)	2.17(5)	1.85(14)	0.89(28)	1.15
F7	1.04(18)	1.29(8)	1.61(12)	2.08(7)	2.03(7)	0.57(16)	1.19
G8	1.07(10)	1.36(5)	1.37(24)	2.03(6)	1.63(13)	0.73(14)	1.13
N6	0.86(37)	1.59(̀3)́	1.72(17)	2.19(4)	1.72(18)	0.51(8)	1.35

Monopole and dipole masses : chiral extrapolations (preliminary, stat error only)

Antoine Gérardin

Introduction	The pion-pole contribution	LbL forward scattering amplitudes	Conclusion and perspectives
Results			
Chiral extrapol	lations :		
• $M_S = 0.9$ ($M_S = 79$	4(12) GeV : slightly above the $6(54)$ MeV for the isoscalar sca	experimental result from the Belle Col lar meson [Masuda '15])	laboration

- $M_A = 1.40(7)$ GeV to be compared with the experimental value by the L3 Collaboration $M_A = 1040(80)$ MeV for the isoscalar meson $f_1(1285)$ [Achard '01 '07].
- $M_T^{(2)} = 1.39(12)$ GeV, $M_{0,T}^{(1)} = 1.67(10)$ GeV and $M_{(1)}^{(0,T)} = 2.01(7)$ GeV, above the experimental values for the isoscalar $f_2(1270)$ mesons obtained by fitting the single-virtual form factor [Masuda '15, Danilkin '16].
- \hookrightarrow Form factors : input for the contribution of resonances to HLbL in $(g-2)_{\mu}$
- \hookrightarrow We are able do describe the lattice data with one particle in each channel (confirmation of the model)
- \hookrightarrow We can also make a prediction on the contribution of disconnected diagrams in two limits :
 - $m_s = \infty$, which corresponds to the two-flavor theory;
 - $m_s = m_{ud}$, which corresponds to the SU(3)-flavor symmetric theory.

We expect the real world to lie between these two predictions :

$$a_{\mu}^{\text{HLbL},(2+2)} \approx \begin{cases} -\frac{25}{9} a_{\mu}^{\text{HLbL},\pi^{0}} + a_{\mu}^{\text{HLbL},\eta'} = -(162 \pm 27) \cdot 10^{-11} & m_{s} = \infty, \\ -2(a_{\mu}^{\text{HLbL},\pi^{0}} + a_{\mu}^{\text{HLbL},\eta}) + a_{\mu}^{\text{HLbL},\eta'} = -(142 \pm 19) \cdot 10^{-11} & m_{s} = m_{ud}. \end{cases}$$

• We have performed a lattice calculation of the pion transition form factor (TFF) in the momentum region relevant for the $(g - 2)_{\mu}$.

 \rightarrow Provides a first lattice estimate of the pion-pole contribution to the hadronic light-by-light scattering in the g-2 of the muon

$$a_{\mu;\text{LMD+V}}^{\text{HLbL};\pi^0} = (65.0 \pm 8.3) \times 10^{-11}$$

- The eight forward light-by-light amplitudes have been computed on the lattice
 - \rightarrow They are well described by the cross sections $\gamma^*\gamma^* \rightarrow$ a few resonances via dispersion relations.
 - \rightarrow Allows us to put constraints on form factors used to estimate the HLbL contribution to the $(g-2)_{\mu}$
- Perspectives
 - \rightarrow Pion TFF : $N_f = 2 + 1$ with full $\mathcal{O}(a)$ -improvement to reduce discretization effects
 - \rightarrow Include a new kinematical configuration where the pion has one unit of momentum
 - \rightarrow Compute the HLbL directly on the lattice

 $(g-2)_{\mu}$: Mainz effort

• Hadronic Vacuum Polarisation (LO)

- \hookrightarrow Recent publication with $N_f = 2$ flavours [arXiv :1705.1775]
- $\hookrightarrow \mathsf{Focus} \text{ on methodology}$
- \hookrightarrow Now generating data with $N_f = 2 + 1$ flavours

• Hadronic Light-by-Light

- $\hookrightarrow \mathsf{Direct} \ \mathsf{lattice} \ \mathsf{calculation}$
- \hookrightarrow Exact QED kernel in position space :

$$a_{\mu}^{\text{HLbL}} = \frac{me^3}{3} \int d^4y \int d^4x \, \overline{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\Pi_{\rho,\mu\nu\lambda\sigma}(x,y)$$
$$i\Pi_{\rho,\mu\nu\lambda\sigma}(x,y) = -\int d^4z \, z_{\rho} \, \langle J_{\mu}(x)J_{\nu}(y)J_{\sigma}(z)J_{\lambda}(0) \rangle$$

- \hookrightarrow Four-point correlation function computed on the lattice \hookrightarrow Only one collaboration has published results so far [RBC/UKQCD]
- Pseudoscalar transition Form Factor
 - \hookrightarrow Gives the dominant contribution to HLbL from first principles

Experimental status

• Decay width : $\Gamma_{\pi^0\gamma\gamma} = 7.82(22) \text{ eV} \sim 3\%$ [PrimEx '10]

$$\Gamma_{\pi^0\gamma\gamma} = \frac{\pi \alpha_e^2 m_\pi^3}{4} \, \mathcal{F}^2_{\pi^0\gamma^*\gamma^*}(0,0)$$

- \rightarrow Consistent with current theoretical predictions
- \rightarrow Experimental test of the chiral anomaly
- \rightarrow A further reduction of the error by a factor of two is expected soon
- The single-virtual form factor has been measured (CELLO, CLEO, BaBar, Belle)
 - \rightarrow Belle data seem to confirm the Brodsky-Lepage behavior $\sim 1/Q^2.$
 - ightarrow Belle and Babar results are quite different
 - \rightarrow No measurement at low Q < 0.8 GeV (dominant contribution)
- No result yet for the double-virtual form factor
 → measurement planned at BESIII
 → challenging (small cross section)

[Belle '12]

Antoine Gérardin

Continuum and chiral extrapolation

- VMD model (Vector Meson Dominance)

$$\mathcal{F}^{\rm VMD}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD model (Lowest Meson Dominance) [Moussallam '94] [Knecht et al. '99]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

- LMD+V model [Knecht & Nyffeler '01]

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\mathrm{LMD+V}}(q_1^2, q_2^2) = \frac{\widetilde{h}_0 \, q_1^2 q_2^2 (q_1^2 + q_2^2) + \widetilde{h}_1 (q_1^2 + q_2^2)^2 + \widetilde{h}_2 \, q_1^2 q_2^2 + \widetilde{h}_5 \, M_{V_1}^2 M_{V_2}^2 \, (q_1^2 + q_2^2) + \alpha \, M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2) (M_{V_2}^2 - q_1^2) (M_{V_1}^2 - q_2^2) (M_{V_2}^2 - q_2^2)}$$

• Anomaly constraint with $\alpha = 1/4\pi^2 F_{\pi}$

T_{-} (0,0) = 1/4-2E		Anomaly	OPE	ΒL
$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0) = \alpha = 1/4\pi \ F_{\pi}$	VMD	√	×	/
 Short distances constraints : 	LMD	1	1	×
$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{OPE}}(-Q^2, -Q^2) \sim 2F_{\pi}/(3Q^2)$	LMD+V	 Image: A start of the start of	1	1
$\mathcal{F}^{ m BL}_{\pi^0\gamma^*\gamma^*}(-Q^2,0) \sim 1/Q^2$				

26 Hadronic light-by-light scattering contribution to the anomalous moment of the muon from lattice QCD Antoine Gérardin

.

Contributions to the eight independent amplitudes

$$\overline{\mathcal{M}}(\nu) = \frac{4\nu^2}{\pi} \int_{\nu_0}^{\infty} d\nu' \, \frac{\sqrt{X'} \, \sigma/\tau(\nu')}{\nu'(\nu'^2 - \nu^2 - i\epsilon)}$$

Amplitude	Pseudoscalar	Scalar	Axial	Tensor	Scalar QED
\mathcal{M}_{TT}	$\sigma_0/2$	$\sigma_0/2$	$\sigma_0/2$	$\frac{\sigma_0 + \sigma_2}{2}$	σ_{TT}
\mathcal{M}_{TT}^t	$-\sigma_0$	σ_0	$-\sigma_0$	σ_0	$ au_{TT}$
\mathcal{M}^a_{TT}	$\sigma_0/2$	$\sigma_0/2$	$\sigma_0/2$	$\frac{\sigma_0 - \sigma_2}{2}$	$ au^a_{TT}$
\mathcal{M}_{TL}	×	×	σ_{TL}	σ_{TL}	σ_{TL}
\mathcal{M}_{LT}	×	×	σ_{LT}	σ_{LT}	σ_{LT}
\mathcal{M}_{TL}^t	×	$ au_{TL}$	$ au_{TL}$	$ au_{TL}$	$ au_{TL}$
\mathcal{M}^a_{TL}	×	$ au_{TL}$	$- au_{TL}$	$ au^a_{TL}$	$ au^a_{TL}$
\mathcal{M}_{LL}	×	σ_{LL}	×	σ_{LL}	σ_{LL}

 $\bullet\,$ Example : contribution of the pseudoscalar to the amplitude M_{TT}

$$\sigma_0 = 16\pi^2 \delta(s - m_P^2) \frac{2\sqrt{X}}{m_P^2} \times \frac{\Gamma_{\gamma\gamma}}{m_P} \times \left[\frac{F_{\mathcal{P}\gamma^*\gamma^*}(Q_1^2, Q_2^2)}{F_{\mathcal{P}\gamma^*\gamma^*}(0, 0)}\right]^2$$

• We assume a constant mass shift in the spectrum (scalar, axial, tensor)

$$m_X = m_X^{\text{phys}} + (m_\rho^{\text{lat}} - m_\rho^{\text{phys}})$$

• The two-photons decay widths $\Gamma_{\gamma\gamma} = \frac{\pi \alpha^2}{4} m_S \left[F^T_{S\gamma^*\gamma^*}(0,0) \right]^2$ are taken from experiment