Fist measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process

Stephane Platchkov
Paris-Saclay University, CEA/IRFU, France

How are the quarks and gluons distributed inside the nucleon?

IRFU

- Longitudinal structure
- Longitudinal momentum, x_{Bj}
- With DIS
- Transverse distributions
- Transverse distance, b_{T}
- With DVCS
- Transverse momentum k_{T}
- With SIDIS, Drell-Yan

COMPASS experiment investigates the multidimensional structure of the nucleon

How to access TMD PDFs

- Goal of nucleon structure studies: distributions of partons inside the nucleon; understand their internal dynamics
- Study PDF as a function of both x and b_{\perp} (GPDs) or x and k_{T} (TMDs)

SIDIS

Assumption: the TMDs are universal (process-independent) ?

Collinear factorization (a pedestrian view)

- Factorization of short distance hard cross-section \otimes the long-distance PDFs.
- Active partons are on shell and collinear:
- $\mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}} \ll \mathrm{Q}^{2}$;
- $\mathrm{p}_{\mathrm{TA}}, \mathrm{p}_{\mathrm{TB}} \ll \mathrm{Q}^{2}$
- Non-perturbative PDFs are universal
- Factorization theorems

Collins, Soper, Sterman, Adv. Ser. High En Phys. 5, 1988 + arXiv:hep-ph/0409313v1
"The factorization formalism ... is proved in the sense that all identified sources of leading power contributions are either factorizable or canceled in perturbative calculations to all orders in powers of α."

TMD factorization (a pedestrian view)

- Collinearity no longer satisfied; transverse momentum to be taken into account
- The gauge links in TMDs are process-dependent (non universality)
- Gauge link are necessary to restore gauge invariance
- SIDIS vs DY: only a sign change --> modified universality for Sivers and Boer-Mulders

Measurement of the sign-change: prove that the TMD factorization is correct

Transverse Momentum Dependent PDFs

- 8 TMDs at leading twist

,		nucleon polarization		
		U		T
quark polarization	U	$\underset{\text { number density }}{f_{1}}$		$f_{\text {IT }}^{\text {Sivers }}$ ¢
	L		$\underset{\substack{\text { helicity }}}{g_{1}}$	$\boldsymbol{g}_{1 T}{ }^{\text {a }}$ - ${ }^{\text {合 }}$
	T	$\boldsymbol{h}_{1}^{\perp} \text { (8) - (2) }$ Boer-Mulders	$\boldsymbol{h}_{1 L}^{\perp}$ (${ }^{\text {d }}$ - (f)	$\begin{gathered} \boldsymbol{h}_{1}-\frac{1}{8}-\mathrm{B} \\ \text { transversity } \\ \boldsymbol{h}_{1 T}^{\perp}-\text { d } \end{gathered}$

Sivers and BM TMDs are process-dependent (they have a "modified universality")

Correlations between transverse nucleon spin, quark spin and quark transverse momentum

Leading twist asymmetries in transversely polarized DY/SIDIS

Simultaneous measurement of all asymmetries

- SIDIS
pion PDFs:
PDF: $h_{1, \pi}^{\perp q}$
$B M: \quad f_{1, \pi}^{q}$

Fragmentation functions:
Collins: $\quad \mathrm{H}_{1, \mathrm{q}}^{\perp \mathrm{h}}$
Unpol: $\quad \mathrm{D}_{1, \mathrm{q}}^{\mathrm{h}}$
unpolarized

The four asymmetries are simultaneously extracted from either SIDIS or DY data

SIDIS measurement of the Sivers asymmetry

COMPASS : a large, fixed-target, versatile setup

- Beams: μ^{+}and $\mu^{-}, \pi+$ and $\pi-, \mathrm{p}, \ldots-$ only place in the world!
- Built for detecting several particles in the final state
- Two spectrometers: Small-angle and Large-angle - large and flat acceptance

Setup shown is used during SIDIS measurements

COMPASS polarized target

- Polarized target with two 55 cm long cells (for DY); three cells for SIDIS
- Superconducting magnets: solenoid + dipole
- Target filled with ammonia $\left(\mathrm{NH}_{3}\right)$ solid beads; also available: ${ }^{6} \mathrm{LiD}$
- Polarization in longitudinal mode, data is taken in transverse mode

$$
\begin{aligned}
& \mathrm{T}=60 \mathrm{mK} \\
& \mathrm{~B}_{\mathrm{s}}=2.5 \mathrm{~T}, \mathrm{~B}_{\mathrm{d}}=0.6 \mathrm{~T}
\end{aligned}
$$

Largest polarized target in the world

Semi-Inclusive DIS - Modulations and structure functions

SIDIS : measurement of all 14 structure functions.

SIDIS - Sivers Asymmetries on a proton target

Sivers asymmetries have been clearly observed

Sivers function - as extracted from the the data

IRFU

COMP ISS

SIDIS Sivers TMD in the COMPASS Drell-Yan Q^{2} range

IRFU
COMPASS, Adolph et al., PL B770 (2017) 138

SIDIS asymmetry in the Drell-Yan mass range

Sivers asymmetry is positive in the Drell-Yan Q^{2} range

Drell-Yan measurement of the Sivers asymmetry

Drell-Yan cross section

IRFU

- Convolution of two PDFs

$$
\frac{d^{2} \sigma}{d M^{2} d x_{F}}=\frac{4 \pi \alpha^{2}}{9 M^{4}} \frac{x_{1} x_{2}}{x_{1}+x_{2}} \sum_{a} e_{a}^{2}\left[q_{a}\left(x_{1}\right) \bar{q}_{a}\left(x_{2}\right)+\bar{q}_{a}\left(x_{1}\right) q_{a}\left(x_{2}\right)\right] \quad Q^{2}=M_{\mu \mu}^{2}
$$

- At order $\left(\alpha_{s}{ }^{0}\right)$: a purely electromagnetic process
- NLO and NNLO corrections are well known

Drell-Yan is a well understood process

COMPASS - Drell-Yan setup

- Large hadron absorber, with a central Tungsten plug

Drell-Yan data taking: 2015 and 2018

Vertex distribution

Di-muon sample - some results from 2015

IRFU

- Drell-Yan data from 2015: $4.3-8.5 \mathrm{GeV} / \mathrm{c}^{2}$

Mass spectrum

x_{N} vs X_{π} distribution

First Transverse Spin Asymmetries (TSA) results

- Averaged TSAs for 2015 data

Drell-Yan : Transversity asymmetry

Adolph et al. PRL 119, 112002 (2017).

Drell-Yan : pretzelosity asymmetry

Adolph et al. PRL 119, 112002 (2017).

Transversity and pretzelosity TMDs have the same sign in SIDIS and DY

Sivers asymmetry : SIDIS vs Drell-Yan

SIDIS data Compass, same Q^{2} range as in DY

Drell-Yan data Compass data range: $4.3-8.5 \mathrm{GeV}$

Sivers asymmetry in SIDIS : used to predict the Drell-Yan asymmetry

DGLAP (2016)
M. Anselmino et al., arXiv:1612.06413

TMD-1 (2014)
M. G. Echevarria et al. PRD89,074013

TMD-2 (2013)
P. Sun, F. Yuan, PRD88, 114012

All theoretical calculation take into account the sign change

Final Drell-Yan Sivers asymmetry

unp. PDF\quadSivers $\sin \left(\phi_{S}\right)$$f_{1, \pi}^{q} \otimes f_{1 T, p}^{\perp q}$	DGLAP: Anselmino et al. arXiv:1612.06413 TMD1: Echevarria et al. Phys Rev D89, 074013 (2014) TMD2: Sun and Yuan, Phys Rev D88, 114012 (2013)

The measured Sivers asymmetry is consistent with the sign-change prediction

Summary

- The Sivers asymmetry measured in Drell-Yan in 2015 is found to be above zero (within 1 std dev.)
- The result is consistent with a sign change of the Sivers TMD
- The Transversity asymmetry is found to be below zero (within 2 std dev.)
- A number of additional results are expected to come soon (analysis ongoing):
- unpolarized Drell-Yan cross sections and angular distributions for $\mathrm{NH}_{3}, \mathrm{Al}, \mathrm{W}$
- unpolarized $\mathrm{J} / \mathrm{psi}$ production cross section and angular distributions
- Polarized J/psi asymmetries
- One more year of Drell-Yan data taking in 2018 should allow to triple our statistical accuracy
cea
IRFU

STAR results for W production - Sivers

Leading twist asymmetries in transversely polarized DY/SIDIS

- SIDIS

$$
\left.\begin{array}{rl}
d \sigma^{S I D I S} \propto & 1+\varepsilon \cos \left(2 \phi_{h}\right) A_{U U}^{\cos \left(2 \phi_{h}\right)}+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right) A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right. \\
& +\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}
\end{array}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) A_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}\right]
$$

- Drell-Yan

$$
\begin{aligned}
d \sigma^{D Y} \propto & \left(1+\cos ^{2}(\theta)+\sin ^{2}(\theta) A_{U U}^{\cos (2 \phi)} \cos (2 \phi)\right)+S_{T}\left[(1+\cos (\theta)) A_{U T}^{\sin \left(\phi_{S}\right)} \sin \left(\phi_{S}\right)\right. \\
& \left.+\sin ^{2}(\theta)\left(A_{U T}^{\sin \left(2 \phi-\phi_{S}\right)} \sin \left(2 \phi-\phi_{S}\right)+A_{U T}^{\sin \left(2 \phi+\phi_{S}\right)} \sin \left(2 \phi+\phi_{S}\right)\right)\right]
\end{aligned}
$$

- Collinear factorization in DY

$$
\frac{d \sigma_{A+B \rightarrow \bar{l}+X}^{(\mathrm{LP})}}{d Q^{2} d y}=\sum_{a b} \int_{0}^{1} d x_{a} \int_{0}^{1} d x_{b} \phi_{a / A}\left(x_{a}, \mu\right) \phi_{b / B}\left(x_{b}, \mu\right) \frac{d \hat{\sigma}_{a+b \rightarrow \bar{u}}\left(x_{a}, x_{b}, Q, \mu, \alpha_{s}\right)}{d Q^{2} d y}
$$

- TMD factorization in DY

$$
\begin{aligned}
\frac{d \sigma_{A+B \rightarrow \bar{l}+X}\left(\vec{S}_{a}, \vec{S}_{b}\right)}{d Q^{2} d y d^{2} \mathbf{q}_{T}}= & \sum_{a, b} \int d x_{a} d x_{b} d^{2} \mathbf{p}_{a \perp} d^{2} \mathbf{p}_{b \perp} \delta^{2}\left(\mathbf{q}_{T}-\mathbf{p}_{a \perp}-\mathbf{p}_{b \perp}\right) \\
& \times f_{a / A}^{\mathrm{DY}}\left(x_{a}, \mathbf{p}_{a \perp}, \vec{S}_{a}, \mu\right) f_{b / B}^{\mathrm{DY}}\left(x_{b}, \mathbf{p}_{b \perp}, \vec{S}_{b}, \mu\right) \frac{d \hat{\sigma}_{a+b \rightarrow \bar{\Pi}}\left(x_{a}, x_{b}, Q, y, \mu\right)}{d Q^{2} d y} \\
& +Y\left(q_{T}, Q, y\right)+\mathcal{O}\left(\left(\Lambda_{\mathrm{QCD}} / Q\right)^{\alpha}\right),
\end{aligned}
$$

