Covariant extension of Generalized Parton Distributions at low Fock states

Nabil Chouika

Irfu/DPhN, CEA Saclay - Université Paris-Saclay
GDR QCD, Orme des Merisiers, 5 Décembre, 2017

DE LA RECHERCHE A LINDUSTAIE

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access
(2) Representations of Generalized Parton Distributions
- Overlap of Light-cone wave functions
- Double Distributions
(3) Covariant extention of Generalized Parton Distributions
- Motivation
- Inversion of Incomplete Radon Transform
- Results
(4) Conclusion

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access
(2) Representations of Generalized Parton Distributions
- Overlap of Light-cone wave functions
- Double Distributions
(3) Covariant extention of Generalized Parton Distributions
- Motivation
- Inversion of Incomplete Radon Transform
- Results

4 Conclusion

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.
- Experimental programs at JLab, COMPASS

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.
- Experimental programs at JLab, COMPASS.
- Impact parameter space GPD (at $\xi=0$): (Burkardt, 2000)

$$
\begin{equation*}
q\left(x, \overrightarrow{b_{\perp}}\right)=\int \frac{\mathrm{d}^{2} \overrightarrow{\Delta_{\perp}}}{(2 \pi)^{2}} e^{-i \overrightarrow{b_{\perp}} \cdot \Delta_{\perp}} H^{q}\left(x, 0,-{\overrightarrow{\Delta_{\perp}}}^{2}\right) . \tag{2}
\end{equation*}
$$

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.
- Experimental programs at JLab, COMPASS.
- Impact parameter space GPD (at $\xi=0)$: (Burkardt, 2000)

$$
\begin{equation*}
q\left(x, \overrightarrow{b_{\perp}}\right)=\int \frac{\mathrm{d}^{2} \overrightarrow{\Delta_{\perp}}}{(2 \pi)^{2}} e^{-i \overrightarrow{b_{\perp}} \cdot \Delta_{\perp}} H^{q}\left(x, 0,-{\overrightarrow{\Delta_{\perp}}}^{2}\right) . \tag{2}
\end{equation*}
$$

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.
- DGLAP: $|x|>|\xi|$.

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.
- DGLAP: $|x|>|\xi|$.
- ERBL: $|x|<|\xi|$.

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.
- DGLAP: $|x|>|\xi|$.
- ERBL: $|x|<|\xi|$.
- Link to PDFs and Form Factors:

$$
\begin{gather*}
\int \mathrm{d} x H^{q}(x, \xi, t)=F^{q}(t) \tag{3}\\
H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x) . \tag{4}
\end{gather*}
$$

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.
- DGLAP: $|x|>|\xi|$.
- ERBL: $|x|<|\xi|$.
- Link to PDFs and Form Factors:

$$
\begin{gather*}
\int \mathrm{d} x H^{q}(x, \xi, t)=F^{q}(t) \tag{3}\\
H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x) . \tag{4}
\end{gather*}
$$

- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{5}
\end{equation*}
$$

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.
- DGLAP: $|x|>|\xi|$.
- ERBL: $|x|<|\xi|$.
- Link to PDFs and Form Factors:

$$
\begin{gather*}
\int \mathrm{d} x H^{q}(x, \xi, t)=F^{q}(t) \tag{3}\\
H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x) . \tag{4}
\end{gather*}
$$

- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{5}
\end{equation*}
$$

- From Lorentz invariance.

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.
- DGLAP: $|x|>|\xi|$.
- ERBL: $|x|<|\xi|$.
- Link to PDFs and Form Factors:

$$
\begin{gather*}
\int \mathrm{d} x H^{q}(x, \xi, t)=F^{q}(t) \tag{3}\\
H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x) . \tag{4}
\end{gather*}
$$

- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{5}
\end{equation*}
$$

- From Lorentz invariance.
- Positivity (in DGLAP): (Pire et al., 1999; Radyushkin, 1999)

$$
\begin{equation*}
\left|H^{q}(x, \xi, t)\right| \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right) q\left(\frac{x+\xi}{1+\xi}\right)} . \tag{6}
\end{equation*}
$$

Theoretical constraints on GPDs

Main properties:

- Physical region: $(x, \xi) \in[-1,1]^{2}$.
- DGLAP: $|x|>|\xi|$.
- ERBL: $|x|<|\xi|$.
- Link to PDFs and Form Factors:

$$
\begin{gather*}
\int \mathrm{d} x H^{q}(x, \xi, t)=F^{q}(t) \tag{3}\\
H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x) . \tag{4}
\end{gather*}
$$

- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{5}
\end{equation*}
$$

- From Lorentz invariance.
- Positivity (in DGLAP): (Pire et al., 1999; Radyushkin, 1999)

$$
\begin{equation*}
\left|H^{q}(x, \xi, t)\right| \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right) q\left(\frac{x+\xi}{1+\xi}\right)} . \tag{6}
\end{equation*}
$$

- Cauchy-Schwarz theorem in Hilbert space.

Accessing GPDs

- Exclusive processes:

DVCS

TCS

DVMP

Accessing GPDs

- Exclusive processes:

DVCS

TCS

DVMP

- Compton Form Factors: (Belitsky et al., 2002)

$$
\begin{equation*}
\mathcal{F}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C\left(x, \xi, \alpha_{S}\left(\mu_{F}\right), \frac{Q}{\mu_{F}}\right) F\left(x, \xi, t, \mu_{F}\right) \tag{7}
\end{equation*}
$$

Accessing GPDs

- Exclusive processes:

DVCS

TCS

DVMP

- Compton Form Factors: (Belitsky et al., 2002)

$$
\begin{equation*}
\mathcal{F}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C\left(x, \xi, \alpha_{S}\left(\mu_{F}\right), \frac{Q}{\mu_{F}}\right) F\left(x, \xi, t, \mu_{F}\right) . \tag{7}
\end{equation*}
$$

- Observables are convolutions of:

Accessing GPDs

- Exclusive processes:

DVCS

TCS

DVMP

- Compton Form Factors: (Belitsky et al., 2002)

$$
\begin{equation*}
\mathcal{F}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C\left(x, \xi, \alpha_{S}\left(\mu_{F}\right), \frac{Q}{\mu_{F}}\right) F\left(x, \xi, t, \mu_{F}\right) \tag{9}
\end{equation*}
$$

- Observables are convolutions of:
- a soft part, i.e. the GPD, with long distance interactions encoded (non-perturbative QCD).

Accessing GPDs

- Exclusive processes:

DVCS

TCS

DVMP

- Compton Form Factors: (Belitsky et al., 2002)

$$
\begin{equation*}
\mathcal{F}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C\left(x, \xi, \alpha_{S}\left(\mu_{F}\right), \frac{Q}{\mu_{F}}\right) F\left(x, \xi, t, \mu_{F}\right) . \tag{8}
\end{equation*}
$$

- Observables are convolutions of:
- a soft part, i.e. the GPD, with long distance interactions encoded (non-perturbative QCD).
- a hard-scattering kernel, calculated with perturbative QCD (short distance interactions).

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access
(2) Representations of Generalized Parton Distributions
- Overlap of Light-cone wave functions
- Double Distributions
(3) Covariant extention of Generalized Parton Distributions
- Motivation
- Inversion of Incomplete Radon Transform
- Results

4 Conclusion

Overlap of Light-cone wave functions

- A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{10}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-front wave functions (LFWF).

Overlap of Light-cone wave functions

- A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{10}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-front wave functions (LFWF).

- For example, for the pion:

$$
\begin{equation*}
\left|\pi^{+}\right\rangle=\psi_{u \bar{d}}^{\pi}|u \bar{d}\rangle+\psi_{u \bar{d} g}^{\pi}|u \bar{d} g\rangle+\ldots \tag{11}
\end{equation*}
$$

Overlap of Light-cone wave functions

- A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{10}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-front wave functions (LFWF).

- For example, for the pion:

$$
\begin{equation*}
\left|\pi^{+}\right\rangle=\psi_{u \bar{d}}^{\pi}|u \bar{d}\rangle+\psi_{u \bar{d} g}^{\pi}|u \bar{d} g\rangle+\ldots \tag{11}
\end{equation*}
$$

- GPD as an overlap of LFWFs: (Diehl et al., 2001; Diehl, 2003)

$$
\begin{align*}
H^{q}(x, \xi, t) & =\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N} \sqrt{1+\xi^{2-N}} \sum_{a} \delta_{a, q} \tag{12}\\
& \times \int[\mathrm{d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{a}\right) \Psi_{N, \beta}^{*}\left(\hat{x}_{1}^{\prime}, \hat{\mathbf{k}}_{\perp 1}^{\prime}, \ldots\right) \Psi_{N, \beta}\left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots\right)
\end{align*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

Overlap of Light-cone wave functions

- A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{10}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-front wave functions (LFWF).

- For example, for the pion:

$$
\begin{equation*}
\left|\pi^{+}\right\rangle=\psi_{u \bar{d}}^{\pi}|u \bar{d}\rangle+\psi_{u \bar{d} g}^{\pi}|u \bar{d} g\rangle+\ldots \tag{11}
\end{equation*}
$$

- GPD as an overlap of LFWFs: (Diehl et al., 2001; Diehl, 2003)

$$
\begin{align*}
H^{q}(x, \xi, t) & =\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N} \sqrt{1+\xi^{2-N}} \sum_{a} \delta_{a, q} \tag{12}\\
& \times \int[\mathrm{d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{a}\right) \Psi_{N, \beta}^{*}\left(\hat{x}_{1}^{\prime}, \hat{\mathbf{k}}_{\perp 1}^{\prime}, \ldots\right) \Psi_{N, \beta}\left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots\right)
\end{align*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$

Overlap of Light-cone wave functions

- A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{10}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-front wave functions (LFWF).

- For example, for the pion:

$$
\begin{equation*}
\left|\pi^{+}\right\rangle=\psi_{u \bar{d}}^{\pi}|u \bar{d}\rangle+\psi_{u \bar{d} g}^{\pi}|u \bar{d} g\rangle+\ldots \tag{11}
\end{equation*}
$$

- GPD as an overlap of LFWFs: (Diehl et al., 2001; Diehl, 2003)

$$
\begin{align*}
H^{q}(x, \xi, t) & =\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N} \sqrt{1+\xi^{2}} \tag{12}\\
& \sum_{a} \delta_{a, q} \\
& \times \int[\mathrm{d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{a}\right) \Psi_{N, \beta}^{*}\left(\hat{x}_{1}^{\prime}, \hat{\mathbf{k}}_{\perp 1}^{\prime}, \ldots\right) \Psi_{N, \beta}\left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots\right),
\end{align*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$
- GPD is a scalar product of LFWFs:

Overlap of Light-cone wave functions

- A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{10}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-front wave functions (LFWF).

- For example, for the pion:

$$
\begin{equation*}
\left|\pi^{+}\right\rangle=\psi_{u \bar{d}}^{\pi}|u \bar{d}\rangle+\psi_{u \bar{d} g}^{\pi}|u \bar{d} g\rangle+\ldots \tag{11}
\end{equation*}
$$

- GPD as an overlap of LFWFs: (Diehl et al., 2001; Diehl, 2003)

$$
\begin{align*}
H^{q}(x, \xi, t) & =\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N} \sqrt{1+\xi^{2-N}} \sum_{a} \delta_{a, q} \tag{12}\\
& \times \int[\mathrm{d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{a}\right) \Psi_{N, \beta}^{*}\left(\hat{x}_{1}^{\prime}, \hat{\mathbf{k}}_{\perp 1}^{\prime}, \ldots\right) \Psi_{N, \beta}\left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots\right)
\end{align*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$
- GPD is a scalar product of LFWFs:
- Cauchy-Schwarz theorem \Rightarrow Positivity fulfilled!

Overlap of Light-cone wave functions

- A given hadronic state is decomposed in a Fock basis: (Brodsky et al., 1981)

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{10}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-front wave functions (LFWF).

- For example, for the pion:

$$
\begin{equation*}
\left|\pi^{+}\right\rangle=\psi_{u \bar{d}}^{\pi}|u \bar{d}\rangle+\psi_{u \bar{d} g}^{\pi}|u \bar{d} g\rangle+\ldots \tag{11}
\end{equation*}
$$

- GPD as an overlap of LFWFs: (Diehl et al., 2001; Diehl, 2003)

$$
\begin{align*}
& H^{q}(x, \xi, t)=\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N} \sqrt{1+\xi^{2}} \tag{12}\\
& \\
& \times \int \sum_{a} \delta_{a, q} \\
&\left.\int \mathrm{~d} \bar{x}\right]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{a}\right) \Psi_{N, \beta}^{*}\left(\hat{x}_{1}^{\prime}, \hat{\mathbf{k}}_{\perp 1}^{\prime}, \ldots\right) \Psi_{N, \beta}\left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots\right)
\end{align*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$
- GPD is a scalar product of LFWFs:
- Cauchy-Schwarz theorem \Rightarrow Positivity fulfilled!
- Polynomiality not manifest...

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H(x, \xi, t) \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) \tag{13}
\end{equation*}
$$

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H(x, \xi, t) \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) \tag{13}
\end{equation*}
$$

- DD h is defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$.

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H(x, \xi, t) \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) \tag{13}
\end{equation*}
$$

- $\operatorname{DD} h$ is defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$.
- Polynomial in ξ :

$$
\begin{align*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t) & \propto \int_{\mathrm{d}} \mathrm{~d} x x^{m} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) \\
& \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(\beta+\xi \alpha)^{m} h(\beta, \alpha, t) \tag{14}
\end{align*}
$$

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H(x, \xi, t) \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) \tag{13}
\end{equation*}
$$

- DD h is defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$.
- Polynomial in ξ :

$$
\begin{align*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t) & \propto \int \mathrm{d} x x^{m} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) \\
& \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(\beta+\xi \alpha)^{m} h(\beta, \alpha, t) \tag{14}
\end{align*}
$$

- Positivity not manifest...

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H(x, \xi, t) \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) . \tag{13}
\end{equation*}
$$

- Radon Transform: (Deans, 1983; Teryaev, 2001)

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H(x, \xi, t) \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) . \tag{13}
\end{equation*}
$$

- Radon Transform: (Deans, 1983; Teryaev, 2001)

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H(x, \xi, t) \propto \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) . \tag{13}
\end{equation*}
$$

- Radon Transform: (Deans, 1983; Teryaev, 2001)

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
- Experimental access
(2) Representations of Generalized Parton Distributions
- Overlap of Light-cone wave functions
- Double Distributions
(3) Covariant extention of Generalized Parton Distributions
- Motivation
- Inversion of Incomplete Radon Transform
- Results
(4) Conclusion

Covariant extension

- For the spatial tomography of hadrons, we need:

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Covariant approach?

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Covariant approach?
- Positivity?

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Covariant approach?
- Positivity?
- Loss of symmetries...

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:
- Derive all parton distributions (not just GPDs)!

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:
- Derive all parton distributions (not just GPDs)!
- But how to truncate?

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:
- Derive all parton distributions (not just GPDs)!
- But how to truncate?

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:
- Derive all parton distributions (not just GPDs)!
- But how to truncate?

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:
- Derive all parton distributions (not just GPDs)!
- But how to truncate?

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:
- Derive all parton distributions (not just GPDs)!
- But how to truncate?
- Use Lorentz invariance to extend from DGLAP!
 (Hwang and Mueller, 2008; Chouika et al., 2017)

Covariant extension

- For the spatial tomography of hadrons, we need:
- GPD at $\xi=0$.
- Experimental access through exclusive processes:
- Integrals over x of GPD at $\xi>0$.
- Extrapolation?
- Light-front wave functions approach:
- Derive all parton distributions (not just GPDs)!
- But how to truncate?
- Use Lorentz invariance to extend from DGLAP!
 (Hwang and Mueller, 2008; Chouika et al., 2017)

Inversion

Problem

Find $h(\beta, \alpha)$ on square $\{|\alpha|+|\beta| \leq 1\}$ such that

$$
\left.H(x, \xi)\right|_{\text {DGLAP }} \propto \int \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha) \delta(x-\beta-\alpha \xi)
$$

Inversion

Problem

Find $h(\beta, \alpha)$ on square $\{|\alpha|+|\beta| \leq 1\}$ such that

$$
\left.H(x, \xi)\right|_{\text {DGLAP }} \propto \int \mathrm{d} \beta \mathrm{~d} \alpha h(\beta, \alpha) \delta(x-\beta-\alpha \xi) .
$$

Inversion

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow h(\beta, \alpha)=0$ for $\beta<0$.

Inversion

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow h(\beta, \alpha)=0$ for $\beta<0$.
- Domains $\beta<0$ and $\beta>0$ are uncorrelated in the DGLAP region.

Inversion

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow h(\beta, \alpha)=0$ for $\beta<0$.
- Domains $\beta<0$ and $\beta>0$ are uncorrelated in the DGLAP region.

Inversion

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow h(\beta, \alpha)=0$ for $\beta<0$.
- Domains $\beta<0$ and $\beta>0$ are uncorrelated in the DGLAP region.
- Divide and conquer:
- Better numerical stability.
- Lesser complexity: $O\left(N^{p}+N^{p}\right) \ll O\left((N+N)^{p}\right)$.

Inversion

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow h(\beta, \alpha)=0$ for $\beta<0$.
- Domains $\beta<0$ and $\beta>0$ are uncorrelated in the DGLAP region.
- Divide and conquer:
- Better numerical stability.
- Lesser complexity: $O\left(N^{p}+N^{p}\right) \ll O\left((N+N)^{p}\right)$.
- α-parity of the DD: $h(\beta,-\alpha)=h(\beta, \alpha)$.

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha) \tag{15}
\end{equation*}
$$

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha) \tag{15}
\end{equation*}
$$

- Piece-wise constant, piece-wise linear, etc.

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha), \tag{15}
\end{equation*}
$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha) \tag{15}
\end{equation*}
$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha), \tag{15}
\end{equation*}
$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
- Random couples $(x, \xi) \longrightarrow m \geq n$ lines of the matrix.

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha), \tag{15}
\end{equation*}
$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
- Random couples $(x, \xi) \longrightarrow m \geq n$ lines of the matrix.
- Linear problem: $A X=B$ where $B_{i}=H\left(x_{i}, \xi_{i}\right)$ and $A_{i j}=\mathcal{R} v_{j}\left(x_{i}, \xi_{i}\right)$.

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha), \tag{15}
\end{equation*}
$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
- Random couples $(x, \xi) \longrightarrow m \geq n$ lines of the matrix.
- Linear problem: $A X=B$ where $B_{i}=H\left(x_{i}, \xi_{i}\right)$ and $A_{i j}=\mathcal{R} v_{j}\left(x_{i}, \xi_{i}\right)$.
- Regularization necessary: discrete ill-posed problem.

Discretization

- Expansion of the DD into basis functions $\left\{v_{j}\right\}$:

$$
\begin{equation*}
h(\beta, \alpha)=\sum_{j} h_{j} v_{j}(\beta, \alpha), \tag{15}
\end{equation*}
$$

- Piece-wise constant, piece-wise linear, etc.
- n columns of the matrix.
- Sampling:
- Random couples $(x, \xi) \longrightarrow m \geq n$ lines of the matrix.
- Linear problem: $A X=B$ where $B_{i}=H\left(x_{i}, \xi_{i}\right)$ and $A_{i j}=\mathcal{R} v_{j}\left(x_{i}, \xi_{i}\right)$.
- Regularization necessary: discrete ill-posed problem.
- Trade-off between noise and convergence.

Some examples (Dyson-Schwinger model)

Figure: Extension of GPDs for the pion DSE model of Refs. (Mezrag, 2015; Mezrag et al., 2016). Comparison to the analytical result. Left: Plot for fixed ξ values $0,0.5$ and 1 , at $t=0 \mathrm{GeV}^{2}$. Right: Plot for fixed t values $0,-0.25$ and $-0.5 \mathrm{GeV}^{2}$, at $\xi=0.5$.

Some examples (Spectator model)

--- analytical result

Figure: Extension of GPD E for the nucleon model of Ref. (Hwang and Mueller, 2008). Comparison to the analytical result of the authors. Left: Plot for fixed ξ values $0,0.5$ and 1 , at $t=0 \mathrm{GeV}^{2}$. Right: Plot for fixed t values $0,-0.25$ and $-0.5 \mathrm{GeV}^{2}$, at $\xi=0.5$.

Some examples (gaussian model)

Figure: Extension of GPD for a gaussian pion model (in the vein of AdS/QCD). Left: Plot for fixed ξ values $0,0.5$ and 1 , at $t=0 \mathrm{GeV}^{2}$. Right: Plot for fixed t values $0,-0.25$ and $-0.5 \mathrm{GeV}^{2}$, at $\xi=0.5$.

Some examples (Regge behavior)

_— numerical result
--- analytical result

Figure: Extension of GPD for a nucleon toy model with Regge behavior. Plot for fixed ξ values $0,0.5$ and 1 .

Some examples (Regge behavior)

_— numerical result
--- analytical result

Figure: Extension of GPD for a nucleon toy model with Regge behavior. Plot for fixed ξ values $0,0.5$ and 1 .

- Integrable singularity for the GPD at $x \sim 0: H(x, \xi) \propto \frac{1}{\sqrt{x}}$.

Some examples (Regge behavior)

__ numerical result
--- analytical result

Figure: Extension of GPD for a nucleon toy model with Regge behavior. Plot for fixed ξ values $0,0.5$ and 1 .

- Integrable singularity for the GPD at $x \sim 0: H(x, \xi) \propto \frac{1}{\sqrt{x}}$.
- Equivalent to an integrable singularity for the DD at $\beta \sim 0: h(\beta, \alpha) \propto \frac{1}{\sqrt{\beta}}$.

Some examples (Regge behavior)

__ numerical result
--- analytical result

Figure: Extension of GPD for a nucleon toy model with Regge behavior. Plot for fixed ξ values $0,0.5$ and 1 .

- Integrable singularity for the GPD at $x \sim 0: H(x, \xi) \propto \frac{1}{\sqrt{x}}$.
- Equivalent to an integrable singularity for the DD at $\beta \sim 0: h(\beta, \alpha) \propto \frac{1}{\sqrt{\beta}}$.
- We solve for $\sqrt{\beta} h(\beta, \alpha)$ instead of $h(\beta, \alpha)$!

Summary

- Generalized Parton Distributions

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
- LFWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\overrightarrow{R T}}$ GPD.

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
- LFWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\overrightarrow{R T}}$ GPD.
- Both polynomiality and positivity!

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
- LFWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\overrightarrow{R T}}$ GPD.
- Both polynomiality and positivity!
- Compromise with respect to noise and convergence.

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
- LFWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\overrightarrow{R T}}$ GPD.
- Both polynomiality and positivity!
- Compromise with respect to noise and convergence.
- arxiv:1711.05108.

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
- LFWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\overrightarrow{R T}}$ GPD.
- Both polynomiality and positivity!
- Compromise with respect to noise and convergence.
- arxiv:1711.05108.
- Unified phenomonelogy of GPDs and TMDs at the level of LFWFs?

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
- LFWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP Inverse Radon Transform $\underset{R T}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!
- Compromise with respect to noise and convergence.
- arxiv:1711.05108.
- Unified phenomonelogy of GPDs and TMDs at the level of LFWFs?
- Thank you!

Summary

- Generalized Parton Distributions
- encode information about the 3D structure of a hadron.
- are accessible with exclusive processes in experiments: JLab, COMPASS, etc.
- Systematic procedure for GPD modeling from first principles:
- LFWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP Inverse Radon Transform $\underset{R T}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!
- Compromise with respect to noise and convergence.
- arxiv:1711.05108.
- Unified phenomonelogy of GPDs and TMDs at the level of LFWFs?
- Thank you!
- Any questions?

III-posed problems and Regularization

- III-posed problems?
- For example the inversion of a Fredholm equation of the first kind:

$$
\begin{equation*}
\int K(x, y) f(y) \mathrm{d} y=g(x) \tag{16}
\end{equation*}
$$

- The inverse is not continuous: an arbitrarily small variation Δg of the rhs can lead to an arbitrarily large variation Δf of the solution.
- The corresponding discrete problem needs to be regularized.

L-curve with the iteration number as regularization factor.
(fig. taken from Ref. (Hansen, 2007))

D-term considerations

- Polynomiality property:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\sum_{\substack{k=0 \\ k e v e n}}^{m+1} c_{k}^{(m)}(t) \xi^{k} \tag{17}
\end{equation*}
$$

- Recast polynomiality property for $H-D$:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m}\left(H(x, \xi, t)-D\left(\frac{x}{\xi}, t\right)\right)=\sum_{\substack{k=0 \\ k \text { even }}}^{m} c_{k}^{(m)}(t) \xi^{k} \tag{18}
\end{equation*}
$$

where $D\left(\frac{x}{\xi}, t\right)$ is the so-called D-term with support on $-\xi<x<\xi$.

- $H-D$ is a Radon Transform:

$$
\begin{equation*}
H(x, \xi, t)-D\left(\frac{x}{\xi}, t\right)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h_{\mathrm{PW}}(\beta, \alpha) \delta(x-\beta-\alpha \xi) \tag{19}
\end{equation*}
$$

- The DGLAP region gives no information on the D-term.
- With other DD representations, we can generate intrinsic D-terms, e.g. Pobylitsa representation:

$$
\begin{equation*}
H(x, \xi, t)=(1-x) \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha h_{\mathrm{P}}(\beta, \alpha) \delta(x-\beta-\alpha \xi) \tag{20}
\end{equation*}
$$

- Still freedom of extra D-term.

Bibliography I

D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejši, "Wave functions, evolution equations and evolution kernels from light ray operators of QCD", Fortsch. Phys. 42 (1994) 101-141, arXiv:hep-ph/9812448 [hep-ph].
A. V. Radyushkin, "Scaling limit of deeply virtual Compton scattering", Phys. Lett. B380 (1996) 417-425, arXiv:hep-ph/9604317 [hep-ph].
X.-D. Ji, "Deeply virtual Compton scattering", Phys. Rev. D55 (1997) 7114-7125, arXiv:hep-ph/9609381 [hep-ph].
M. Burkardt, "Impact parameter dependent parton distributions and off forward parton distributions for zeta —> 0", Phys. Rev. D62 (2000) 071503, arXiv:hep-ph/0005108 [hep-ph], [Erratum: Phys. Rev.D66,119903(2002)].
B. Pire, J. Soffer, and O. Teryaev, "Positivity constraints for off - forward parton distributions", Eur. Phys. J. C8 (1999) 103-106, arXiv:hep-ph/9804284 [hep-ph].
A. V. Radyushkin, "Double distributions and evolution equations", Phys. Rev. D59 (1999) 014030, arXiv:hep-ph/9805342 [hep-ph].
A. V. Belitsky, D. Mueller, and A. Kirchner, "Theory of deeply virtual Compton scattering on the nucleon", Nucl. Phys. B629 (2002) 323-392, arXiv:hep-ph/0112108 [hep-ph].
S. J. Brodsky, T. Huang, and G. P. Lepage, "Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics", Conf. Proc. C810816 (1981) 143-199.

Bibliography II

M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, "The overlap representation of skewed quark and gluon distributions", Nucl. Phys. B596 (2001) 33-65, arXiv:hep-ph/0009255 [hep-ph], [Erratum: Nucl. Phys.B605,647(2001)].
M. Diehl, "Generalized parton distributions", Phys. Rept. 388 (2003) 41-277, arXiv:hep-ph/0307382 [hep-ph].
S. R. Deans, "The Radon Transform and Some of Its Applications", Wiley-Interscience, 1983.
O. V. Teryaev, "Crossing and radon tomography for generalized parton distributions", Phys. Lett. B510 (2001) 125-132, arXiv:hep-ph/0102303 [hep-ph].
D. S. Hwang and D. Mueller, "Implication of the overlap representation for modelling generalized parton distributions", Phys. Lett. B660 (2008) 350-359, arXiv:0710. 1567 [hep-ph].
N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, "Covariant Extension of the GPD overlap representation at low Fock states", arXiv:1711.05108 [hep-ph].
C. Mezrag, "Generalised Parton Distributions : from phenomenological approaches to Dyson-Schwinger equations", PhD thesis, IRFU, SPhN, Saclay, 2015.
C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, "From Bethe-Salpeter Wave functions to Generalised Parton Distributions", Few Body Syst. 57 (2016), no. 9, 729-772, arXiv:1602.07722 [nucl-th].
P. C. Hansen, "Regularization Tools version 4.0 for Matlab 7.3", Numerical Algorithms 46 (2007), no. 2, 189-194.

