Parton Distribution Amplitudes:
 Revealing diquarks in the Nucleon and the Roper

Cédric Mezrag

INFN Roma1

December $5^{\text {th }}, 2017$

In collaboration with:
J. Segovia, C.D. Roberts and L. Chang
based on arXiv 1711.09101

Daryan

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}
- Schematically a distribution amplitude φ is related to the LFWF through:

$$
\varphi(x) \propto \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{2}} \Psi\left(x, k_{\perp}\right)
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(p \not \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$
- 3 bodies Fock space interpretation (leading twist):

$$
\begin{aligned}
&|P, \uparrow\rangle=\int \frac{[\mathrm{d} x]}{8 \sqrt{6 x_{1} x_{2} x_{3}}}|u u d\rangle \otimes\left[\varphi\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \downarrow \uparrow\rangle\right. \\
&\left.+\varphi\left(x_{2}, x_{1}, x_{3}\right)|\downarrow \uparrow \uparrow\rangle-2 T\left(x_{1}, x_{2}, x_{2}\right)|\uparrow \uparrow \downarrow\rangle\right]
\end{aligned}
$$

Nucleon Distribution Amplitudes

- 3 bodies matrix element expanded at leading twist:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P\rangle=\frac{1}{4}\left[(\not p C)_{\alpha \beta}\left(\gamma_{5} N^{+}\right)_{\gamma} V\left(z_{i}^{-}\right)\right. \\
& \left.+\left(\not p \gamma_{5} C\right)_{\alpha \beta}\left(N^{+}\right)_{\gamma} A\left(z_{i}^{-}\right)-\left(i p^{\mu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\nu} \gamma_{5} N^{+}\right)_{\gamma} T\left(z_{i}^{-}\right)\right]
\end{aligned}
$$

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)

- Usually, one defines $\varphi=V-A$
- 3 bodies Fock space interpretation (leading twist):

$$
\begin{aligned}
&|P, \uparrow\rangle=\int \frac{[\mathrm{d} x]}{8 \sqrt{6 x_{1} x_{2} x_{3}}}|u u d\rangle \otimes\left[\varphi\left(x_{1}, x_{2}, x_{3}\right)|\uparrow \downarrow \uparrow\rangle\right. \\
&\left.+\varphi\left(x_{2}, x_{1}, x_{3}\right)|\downarrow \uparrow \uparrow\rangle-2 T\left(x_{1}, x_{2}, x_{2}\right)|\uparrow \uparrow \downarrow\rangle\right]
\end{aligned}
$$

- Isospin symmetry:

$$
2 T\left(x_{1}, x_{2}, x_{3}\right)=\varphi\left(x_{1}, x_{3}, x_{2}\right)+\varphi\left(x_{2}, x_{3}, x_{1}\right)
$$

Evolution and Asymptotic results

- Both φ and T are scale dependent objects: they obey evolution equations

Evolution and Asymptotic results

- Both φ and T are scale dependent objects: they obey evolution equations
- At large scale, they both yield the so-called asymptotic DA φ_{AS} :

Evolution and Asymptotic results

- Both φ and T are scale dependent objects: they obey evolution equations
- At large scale, they both yield the so-called asymptotic DA φ_{AS} :

Some previous studies of DA

- QCD Sum Rules
- V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246 (1984)
- Relativistic quark model
- Z. Dziembowski, PRD 37 (1988)
- Scalar diquark clustering
- Z. Dziembowski and J. Franklin, PRD 42 (1990)
- Phenomenological fit
- J. Bolz and P. Kroll, Z. Phys. A 356 (1996)
- Lightcone quark model
- B. Pasquini et al., PRD 80 (2009)
- Lightcone sum rules
- I. Anikin et al., PRD 88 (2013)
- Lattice Mellin moment computation
- G. Bali et al., JHEP 201602

Our Approach

- Inspired by the results obtained from DSEs and Faddeev equations.
- We do not use numerical solution of the Faddeev equation, but algebraic parametrisations based on the Nakanishi representation.
- This is an exploratory work: we want to know what can be done.
- We also assume the dynamical diquark correlations, both scalar and AV , and compare in the end with Lattice QCD one.

Nucleon DA as a Matrix Element

- Operator point of view for every DA (and at every twist):

$$
\begin{aligned}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) \phi d d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow \varphi\left(x_{i}\right) \rightarrow O_{\varphi}, \\
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow T\left(x_{i}\right) \rightarrow O_{T},
\end{aligned}
$$

Nucleon DA as a Matrix Element

- Operator point of view for every DA (and at every twist):

$$
\begin{aligned}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) 巾 d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow \varphi\left(x_{i}\right) \rightarrow O_{\varphi}, \\
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow T\left(x_{i}\right) \rightarrow O_{T},
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

Nucleon DA as a Matrix Element

- Operator point of view for every DA (and at every twist):

$$
\begin{aligned}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) 巾 d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow \varphi\left(x_{i}\right) \rightarrow O_{\varphi}, \\
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow T\left(x_{i}\right) \rightarrow O_{T},
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

Nucleon DA as a Matrix Element

- Operator point of view for every DA (and at every twist):

$$
\begin{aligned}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C h u_{\downarrow}^{j}\left(z_{2}\right)\right) 巾 d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow \varphi\left(x_{i}\right) \rightarrow O_{\varphi}, \\
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle & \rightarrow T\left(x_{i}\right) \rightarrow O_{T},
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:
- The operator then selects the relevant component of the wave function.

Scalar diquark contribution

- In the scalar diquark case, only one contribution remains (φ case):

Scalar diquark contribution

- In the scalar diquark case, only one contribution remains (φ case):

- The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand.

Scalar diquark contribution

- In the scalar diquark case, only one contribution remains (φ case):

- The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand.
- The way to write the nucleon Dirac structure is not unique, and can be modified (Fierz identity):

Scalar diquark contribution

- In the scalar diquark case, only one contribution remains (φ case):

- The contraction of the Dirac indices between the single quark and the diquark makes it hard to understand.
- The way to write the nucleon Dirac structure is not unique, and can be modified (Fierz identity):

We recognise the leading twist DA of a scalar diquark

AV Contributions

$\mathcal{N N}$ $\rightarrow O_{\varphi}$,

$\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow T\left(x_{i}\right) \rightarrow O_{T}$,

AV Contributions

$\xrightarrow{\sim N}$

$\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow T\left(x_{i}\right) \rightarrow O_{T}$,

AV Contributions

$\xrightarrow{\sim N}$

$\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} \not d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow T\left(x_{i}\right) \rightarrow O_{T}$,

AV Contributions

AV Contributions

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C \phi u_{\downarrow}^{j}\left(z_{2}\right)\right) \not \hbar d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{i}\right) \rightarrow O_{\varphi},
$$

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}\right) C i \sigma_{\perp \nu} n^{\nu} u_{\uparrow}^{j}\left(z_{2}\right)\right) \gamma^{\perp} h d_{\uparrow}^{k}\left(z_{3}\right)|P, \lambda\rangle \rightarrow T\left(x_{i}\right) \rightarrow O_{T},
$$

$$
\underbrace{\rightarrow O_{T}^{21}}_{\substack{p_{3}} O_{T}^{3}}=\underbrace{\sim O_{T}}_{\substack{p_{1} \\ \text { One chiral-odd DA } \\ \text { (transverse) }}}+O_{\substack{\text { Two chiral-even DAs } \\ \text { (longitudinal) }}}^{O_{T}}+O_{T}
$$

$$
2 T\left(x_{1}, x_{2}, x_{3}\right)=\varphi\left(x_{1}, x_{3}, x_{2}\right)+\varphi\left(x_{2}, x_{3}, x_{1}\right)
$$

Modeling the Diquarks

Scalar diquark I: the point-like case

- Quark propagator:

$$
S(q)=\frac{-i q+M}{q^{2}+M^{2}}
$$

Scalar diquark I: the point-like case

- Quark propagator:

$$
S(q)=\frac{-i q+M}{q^{2}+M^{2}}
$$

- Bethe-Salpeter amplitude (1 out of 4 structures):

$$
\Gamma_{\mathrm{PL}}^{0+}(q, K)=i \gamma_{5} C \mathcal{N}^{0+}
$$

Scalar diquark I: the point-like case

- Quark propagator:

$$
S(q)=\frac{-i q+M}{q^{2}+M^{2}}
$$

- Bethe-Salpeter amplitude (1 out of 4 structures):

$$
\Gamma_{\mathrm{PL}}^{0+}(q, K)=i \gamma_{5} C \mathcal{N}^{0+}
$$

- This point-like case leads to a flat DA:

$$
\phi_{\mathrm{PL}}(x)=1
$$

Scalar diquark II: the Nakanishi case

- Quark propagator:

$$
S(q)=\frac{-i q+M}{q^{2}+M^{2}}
$$

Scalar diquark II: the Nakanishi case

- Quark propagator:

$$
S(q)=\frac{-i q+M}{q^{2}+M^{2}}
$$

- Bethe-Salpeter amplitude (1 out of 4 structures):

$$
\Gamma_{\mathrm{PL}}^{0+}(q, K)=i \gamma_{5} C \mathcal{N}^{0+} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left[\left(q-\frac{1-z}{2} K\right)^{2}+\Lambda_{q}^{2}\right]}
$$

Scalar diquark II: the Nakanishi case

- Quark propagator:

$$
S(q)=\frac{-i q+M}{q^{2}+M^{2}}
$$

- Bethe-Salpeter amplitude (1 out of 4 structures):

$$
\Gamma_{\mathrm{PL}}^{0+}(q, K)=i \gamma_{5} C \mathcal{N}^{0+} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left[\left(q-\frac{1-z}{2} K\right)^{2}+\Lambda_{q}^{2}\right]}
$$

- The Nakanishi case leads to a non trivial DA:

$$
\phi(x) \propto 1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}
$$

Scalar DA behaviour

$$
\phi(x)=\mathcal{N}\left(1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right)
$$

Scalar diquark

Scalar DA behaviour

$$
\phi(x)=\mathcal{N}\left(1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right)
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

Scalar DA behaviour

$$
\phi(x)=\mathcal{N}\left(1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right)
$$

Scalar diquark

Pion

Pion figure from L. Chang et al., PRL 110 (2013)

This extended version of the DA seems promising!

Scalar DA behaviour

$$
\phi(x)=\mathcal{N}\left(1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right)
$$

Nota Bene

This PDA model can be used for meson easily, replacing $\frac{K^{2}}{M^{2}} \rightarrow \alpha$, where α become a free parameter $\in[0,+\infty]$ controlling the curvature of the PDA. This model has two main features:

- explore a region where the PDA is broader than the asymptotic one, but remained peaked at $x=1 / 2$.
- has linear endpoint behaviour.

Such a model can for instance be used to explore the effect of the PDA curvature in DVMP, for instance with PARTONS.

AV diquark DA

- Quark propagator:

$$
S(q)=\frac{-i \phi+M}{q^{2}+M^{2}}
$$

AV diquark DA

- Quark propagator:

$$
S(q)=\frac{-i q+M}{q^{2}+M^{2}}
$$

- Bethe-Salpeter amplitude (2 out of 8 structures):

$$
\begin{aligned}
\Gamma_{\mathrm{PL}}^{\mu}(q, K) & =\left(\mathcal{N}_{1} \tau_{1}^{\mu}+\mathcal{N}_{2} \tau_{2}^{\mu}\right) C \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left[\left(q-\frac{1-z}{2} K\right)^{2}+\Lambda_{q}^{2}\right]} \\
\tau_{1}^{\mu} & =i\left(\gamma^{\mu}-K^{\mu} \frac{K}{K^{2}}\right) \rightarrow \text { Chiral even } \\
\tau_{2}^{\mu} & =\frac{K \cdot q}{\sqrt{q^{2}(K-q)^{2}} \sqrt{K^{2}}}\left(-i \tau_{1}^{\mu} q+i q \tau_{1}^{\mu}\right) \rightarrow \text { Chiral odd }
\end{aligned}
$$

Comparison with the ρ meson

AV diquark

ρ figure from F. Gao et al., PRD 90 (2014)

Comparison with the ρ meson

AV diquark

ρ meson

ρ figure from F. Gao et al., PRD 90 (2014)

- Same "shape ordering" $\rightarrow \phi_{\perp}$ is flatter in both cases.
- Farther apart compared to the ρ meson case.

Modeling the Faddeev Amplitude

Faddeev Amplitude

- Scalar case:

$$
s_{1}(K, P)=\mathcal{N}_{1} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left[\left(K-\frac{1-z}{2} P\right)^{2}+\Lambda_{N}^{2}\right]}
$$

- $A V$ case (2 out of 6 structures):

$$
A^{\mu}(K, P)=\left(\gamma_{5} \gamma^{\mu}-i \gamma_{5} \hat{P}^{\mu}\right) \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left[\left(K-\frac{1-z}{2} P\right)^{2}+\Lambda_{N}^{2}\right]}
$$

Results in the scalar channel

Asymptotic DA

Point-like case: φ

Extended case: T

Extended case:

Results in the scalar channel

Asymptotic DA

Point-like case: φ

Extended case: T

Extended case:

Comparison with lattice I

istituto Nazionale
di Fisica Nuclear

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602

Complete results for φ

- We use the prediction from the Faddeev equation to weight the scalar and $A V$ contributions 65/35:

$\begin{array}{llllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\ & & & \mathbf{U l}\left(\boldsymbol{X}_{1}\right)\end{array}$

$\begin{array}{llllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 \\ & & & & \mathbf{U}\left(\mathcal{X}_{1}\right)\end{array}$

Comparison with lattice II

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602

Comparison with lattice II

- 65% Scalar $+-5 \%$
--- Asymptotic Value
- Lattice 2016
- Lattice 2014
- Scalar Only
- Evolved Results

Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602

Comparison with lattice III

Scalar
Scalar + Evolution

- Lattice 2016

L Lattice 2014

- Scal+AV(cs = 0.77)
- Scal+AV(cs = 0.77) + Evo

Computations done by J. Segovia
Lattice data from V.Braun et al, PRD 89 (2014)
G. Bali et al., JHEP 201602

From Nucleon to Roper

- Results for the nucleon and Roper at 2 GeV .
- The nucleon remains broader and the peak shifted toward large x_{1}
- The roper present a negative area consistently with our understanding of $n=1$ excited states.
- We provide a parametrisation of our results at 2 GeV .

Form Factors

$F_{1}\left(Q^{2}\right)=\mathcal{N} \int\left[\mathrm{d} x_{i}\right]\left[\mathrm{d} y_{i}\right]\left[\varphi\left(x_{i}, \zeta_{x}^{2}\right) H_{\varphi}\left(x_{i}, y_{i}, Q^{2}, \zeta_{x}^{2}, \zeta_{y}^{2}\right) \varphi\left(y_{i}, \zeta_{y}^{2}\right)\right.$

$$
\left.+T\left(x_{i}, \zeta_{x}^{2}\right) H_{T}\left(x_{i}, y_{i}, Q^{2}, \zeta_{x}^{2}, \zeta_{y}^{2}\right) T\left(y_{i}, \zeta_{y}^{2}\right)\right]
$$

Form Factors

$$
\begin{aligned}
F_{1}\left(Q^{2}\right)=\mathcal{N} \int\left[\mathrm{d} x_{i}\right]\left[\mathrm{d} y_{i}\right][& {\left[\left(x_{i}, \zeta_{x}^{2}\right) H_{\varphi}\left(x_{i}, y_{i}, Q^{2}, \zeta_{x}^{2}, \zeta_{y}^{2}\right) \varphi\left(y_{i}, \zeta_{y}^{2}\right)\right.} \\
& \left.+T\left(x_{i}, \zeta_{x}^{2}\right) H_{T}\left(x_{i}, y_{i}, Q^{2}, \zeta_{x}^{2}, \zeta_{y}^{2}\right) T\left(y_{i}, \zeta_{y}^{2}\right)\right]
\end{aligned}
$$

- LO Kernel well known since more than 30 years...
- ...but different groups have argued different choices for the treatment of scales:
- for the DA : $\varphi\left(Q^{2}\right), \varphi\left(\left(\min \left(x_{i}\right) \times Q\right)^{2}\right) \ldots$,
- for the strong coupling constant :

$$
\alpha_{S}\left(Q^{2}\right), \alpha_{s}\left(<x_{i}>^{2} Q^{2}\right), \alpha_{s}^{\mathrm{reg}}\left(g\left(x_{i}, y_{j}\right) Q^{2}\right)
$$

- Use of perturbative coupling vs. effective coupling?

Very preliminary results

More work is required before we can conclude anything.

TDA : A new understanding of hadron structure

Istituto Nazionale
di Fisica Nucleare

$$
\begin{gathered}
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|N, P\rangle \\
\downarrow \\
\langle\pi, p| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|N, P\rangle
\end{gathered}
$$

- Transition Distribution Amplitude encodes the non-perturbative information contain in an off-diagonal matrix element.
- They can be measured in backward kinematics of DVMP.
L.L. Frankfurt et al., PRD 60014010 (1999)
B. Pire and L. Szymanowski PRD 71111501 (2005)
B. Pire and L. Szymanowski PLB 62283 (2005)
K. Park et al., arXiv 1711.08486

TDA: Entering the measurable era

- TDA formalism predict the dominance of σ_{T} at large Q^{2}.
- Large $\sigma_{L T}$ and $\sigma_{T T}$ suggest a large σ_{T} contribution.
- σ_{U} seems not too far from theroretical predictions for σ_{T}.
figure from K. Park et al., arXiv 1711.08486

TDA: Entering the measurable era

- TDA formalism predict the dominance of σ_{T} at large Q^{2}.
- Large $\sigma_{L T}$ and $\sigma_{T T}$ suggest a large σ_{T} contribution.
- σ_{U} seems not too far from theroretical predictions for σ_{T}.

This hints toward measurable TDAs in backward kinematics.
figure from K. Park et al., arXiv 1711.08486

TDAs exhibit similar to GPDs:

- They depend on $\left\{x_{i}\right\}, \xi, \Delta^{2}, \mu_{F}^{2}$.
- They also obey polynomiality and can be written in terms of Spectral Functions.
- They reduce to the nucleon PDA when $\xi \rightarrow 1$ due to the soft pion theorem, the same way, the pion GPD reduced itself to the pion PDA.

TDAs exhibit similar to GPDs:

- They depend on $\left\{x_{i}\right\}, \xi, \Delta^{2}, \mu_{F}^{2}$.
- They also obey polynomiality and can be written in terms of Spectral Functions.
- They reduce to the nucleon PDA when $\xi \rightarrow 1$ due to the soft pion theorem, the same way, the pion GPD reduced itself to the pion PDA.

Advantage of TDA

TDA are define through a pion bra $\langle\pi, p|$ while GPDs through a nucleon bra $\langle N, p|$. This simplifies significantly the computations, and TDAs appears to be a natural intermediary steps between nucleon PDA and nucleon GPDs.

Computing TDA

(a)

(c)
figures from J.-P. Landsberg et al., PRD 85054021 (2012)

- Three different contribution coming from different kinematics.
- We can compute the (b) involving only valence components.
- The question is to know if we can apply the formalism of the inverse Radon transform to obtain an extension on TDA fulfilling polynomiality, the same way it as recently be developed for GPDs.
N. Chouika, CM et al., arXiv 1711.05108
N. Chouika, CM et al., arXiv 1711.11548

Conclusion

- The nucleon PDA can be described using a quark-diquark approximation.
- As a side-effect, we obtained a meson PDA parametrisation.
- The comparison with lattice computations explains how the different diquarks contribute to the total DAs, and the respective sensitivity of the latter to the AV-diquarks.
- We have obtained the first evaluation of the Roper PDA.
- We have preliminary results on the nucleon Dirac form factors
- Keep working on PDAs but using the numerical solution of DSEs.
- Keep exploring hadron structures with algebraic PTIR model. TDAs and GPDs are our targets.

Thank you for your attention

Back up slides

Pion distribution amplitude

$$
\phi_{A s}(x)=6 x(1-x)
$$

L. Chang et al. (2013)
L. Chang et al. (2013)

- Broad DSE pion DA is much more consistent with the form factor than the asymptotic one.
- The scale when the asymptotic DA become relevant is huge.

$N(1535)$

Istituto Nazionale
di Fisica Nucleare

Figure from V. Braun et la.,Phys. Rev. D89, 094511 (2014)

Beyond the Form Factors

- The form factor is only the first Mellin Moment of GPDs and GDAs.
- The perturbative formula have been generalised to GPDs at large t and GDAs at large s for mesons and baryons.
M. Diehl et al., PRD 61, (2000) 074029
C. Vogt, PRD 64, (2001), 057501
P. Hoodboy et al., PRL 92 (2004) 012003
B. Pire et al., PLB 639, (2006) 642-651

Can we use our DA models to get relevant information on GPDs and GDAs for mesons and baryons?

