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Hadrons seen as Fock States

o Lightfront quantization allows to expand hadrons on a Fock basis:

P.x) o S W qg) + 3 wiqg, q7) + ...

3 3
IP,N) o< > Wi qqq) + > Wi qqq,q3) + ...
E 3
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Hadrons seen as Fock States NN

o Lightfront quantization allows to expand hadrons on a Fock basis:

P.x) o S W qg) + 3 wiqg, q7) + ...

3 3
IP,N) o< > Wi qqq) + > Wi qqq,q3) + ...
E 3

@ Non-perturbative physics is contained in the N-particles
Lightfront-Wave Functions (LFWF) WV

@ Schematically a distribution amplitude ¢ is related to the LFWF

through:
d?k,
o(x) W\U(X, ki)

S. Brodsky and G. Lepage, PRD 22, (1980)
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Nucleon Distribution Amplitudes IN

@ 3 bodies matrix element:

(Ofe¥ uf, (z1)uy (22)df (23)| P)
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Nucleon Distribution Amplitudes (ﬁ?

@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 —
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)
+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)
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Nucleon Distribution Amplitudes a/')

@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 —
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)
+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)
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Nucleon Distribution Amplitudes (ﬁ?

@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 —
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)
+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)
@ Usually, one defines p =V — A
@ 3 bodies Fock space interpretation (leading twist):

B [dx]
P1) = [ Gamluud) @ [l 2.5 144)

+o(x2, x1,x3)| 111) — 2T (x1, x2, x2)| T14)]
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Nucleon Distribution Amplitudes INEN
@ 3 bodies matrix element expanded at leading twist:
ijk i ' 1 .
(Ol (z1)ut(22) i (22) P} = 5 [(BC) 5 (3sF)., Vi)

+(P15C) oy (V) AZT) = (0030, C) s (135N F), T(2)]

V. Chernyak and I. Zhitnitsky, Nucl. Phys. B 246, (1984)
@ Usually, one defines p =V — A
@ 3 bodies Fock space interpretation (leading twist):

B [dx]
P1) = [ Gamluud) @ [l 2.5 144)

o (x2, x1,x3)[ 1) — 2T (x1, x2, x2)| T1)]
@ Isospin symmetry:

2T (x1,x2,x3) = p(x1,X3,%2) + ©(x2, X3, X1)
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Evolution and Asymptotic results

@ Both ¢ and T are scale dependent objects: they obey evolution
equations
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Evolution and Asymptotic results INFN

@ Both ¢ and T are scale dependent objects: they obey evolution
equations

@ At large scale, they both yield the so-called asymptotic DA ¢ag:

2

01 02 03 04 05 06 07 08 09

u(xy)
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Some previous studies of DA

e QCD Sum Rules
» V. Chernyak and . Zhitnitsky, Nucl. Phys. B 246 (1984)

@ Relativistic quark model

» Z. Dziembowski, PRD 37 (1988)
Scalar diquark clustering

» Z. Dziembowski and J. Franklin, PRD 42 (1990)
Phenomenological fit

> J. Bolz and P. Kroll, Z. Phys. A 356 (1996)
Lightcone quark model

» B. Pasquini et al., PRD 80 (2009)
Lightcone sum rules

> 1. Anikin et al., PRD 88 (2013)
Lattice Mellin moment computation

» G. Bali et al.,, JHEP 2016 02
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Our Approach U?

@ Inspired by the results obtained from DSEs and Faddeev equations.

@ We do not use numerical solution of the Faddeev equation, but
algebraic parametrisations based on the Nakanishi representation.

@ This is an exploratory work: we want to know what can be done.

@ We also assume the dynamical diquark correlations, both scalar and
AV, and compare in the end with Lattice QCD one.
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Nucleon DA as a Matrix Element INEN

@ Operator point of view for every DA (and at every twist):

(0l (ui(21)Cyiu](22)) i (23) P, A) = () = O,
(Ol ((ui(z1) Cir 10" (22)) 7 idk (23) P, A) = T(x) = O,

Braun et al., Nucl.Phys. B589 (2000)
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Nucleon DA as a Matrix Element INEN

@ Operator point of view for every DA (and at every twist):
(Ol (ui(z) Cp](22)) pdf(23)| P, A) = (x) = O,
(0] (u4(zl)C/alynvL4(zz)) v pdf(z3)|P,A) = T(x;) = O,

Braun et al., Nucl.Phys. B589 (2000)

@ We can apply it on the wave function:

V41 921
DA
P2
D3 3

090
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Nucleon DA as a Matrix Element INEN

@ Operator point of view for every DA (and at every twist):
(O™ (ui(z) Chv](22)) pdf(25)|P. \) = (x) = O,
(0] (u4(zl)C/aL,,nvt4(zz)) v hdk(z3)| P, ) = T(x) = Or,

Braun et al., Nucl.Phys. B589 (2000)

@ We can apply it on the wave function:
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Nucleon DA as a Matrix Element INEN

@ Operator point of view for every DA (and at every twist):
(O™ (ui(z) Chv](22)) pdf(25)|P. \) = (x) = O,
(0] (u4(zl)C/aL,,nut4(zz)) v hdk(z3)| P, ) = T(x) = Or,

Braun et al., Nucl.Phys. B589 (2000)

@ We can apply it on the wave function:

@ The operator then selects the relevant component of the wave
function.
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Scalar diquark contribution

@ In the scalar diquark case, only one contribution remains (¢ case):

PL 14

21 21
% b
- — P2

= o Z

p3
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Scalar diquark contribution

@ In the scalar diquark case, only one contribution remains (¢ case):
— 21 - 21
Dot Dot
P2 — P2

L O} o}

p3 ¥

@ The contraction of the Dirac indices between the single quark and the
diquark makes it hard to understand.
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Scalar diquark contribution

@ In the scalar diquark case, only one contribution remains (¢ case):

PL 14

P s ¥

@ The contraction of the Dirac indices between the single quark and the
diquark makes it hard to understand.

@ The way to write the nucleon Dirac structure is not unique, and can
be modified (Fierz identity):

2 . D1 1
Dot
P2 i

P
X ) Chgy -
o

3
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Scalar diquark contribution

@ In the scalar diquark case, only one contribution remains (¢ case):

PL 14

P s ¥

@ The contraction of the Dirac indices between the single quark and the
diquark makes it hard to understand.

@ The way to write the nucleon Dirac structure is not unique, and can
be modified (Fierz identity):

021
tToe
Od ) Clysy-n

We recognise the leading twist DA of a scalar diquark )
Baryon PDA and Beyond December 5%, 2017 9/ 34
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AV Contributions P —

(01 (uh(2)Cpe(22)) ok (25)1P,A) = o(x) = O
(017 (ul(z1) Ci 10"t (22) ) 7 id(23) | P, ) = T(x) = O
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AV Contributions IN

(01 (uh(2)Cpe(22)) ok (25)1P,A) = o(x) = O
(05 (64(22)Cir 0 (2) 7" el ()], ) — T(x) — O

C. Mezrag (INFN) Baryon PDA and Beyond December 5th, 2017 10 / 34



- - /—)
AV Contributions P> —

(01 (uh(2)Cpe(22)) ok (25)1P,A) = o(x) = O
(05 (64(22)Cir 0 (2) 7" el ()], ) — T(x) — O

Two chiral-even DAs One chiral-odd DA
(longitudinal) (transverse)
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AV Contributions INER

(01 (uh(2)Cpe(22)) ok (25)1P,A) = o(x) = O
(05 (64(22)Cir 0 (2) 7" el ()], ) — T(x) — O

Two chiral-even DAs One chiral-odd DA
(longitudinal) (transverse)

B ) Op N ) Op n ) Op

Or Or Or
One chiral-odd DA Two chiral-even DAs
(transverse) (longitudinal)
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_— —
AV Contributions INER

(01 (uh(2)Cpe(22)) ok (25)1P,A) = o(x) = O
(05 (64(22)Cir 0 (2) 7" el ()], ) — T(x) — O

Two chiral-even DAs One chiral-odd DA
(longitudinal) (transverse)

B ) Op N ) Op n ) Op

Or Or Or
One chiral-odd DA Two chiral-even DAs
(transverse) (longitudinal)

2T(X17X27X3) = 90(X17X37X2) + SO(X27X37X1)
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Modeling the Diquarks
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Scalar diquark I: the point-like case

= O

—ig+M
- q2_|_M2

@ Quark propagator:
5(q)
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Scalar diquark I: the point-like case

= O

—ig+ M

@ Bethe-Salpeter amplitude (1 out of 4 structures):

@ Quark propagator:

% (g, K) = ins CNOF
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Scalar diquark I: the point-like case /N

—@ )
@ Quark propagator:
—ig+ M

@ Bethe-Salpeter amplitude (1 out of 4 structures):
MBL(g, K) = irs CNF
@ This point-like case leads to a flat DA:

dpL(x) =1
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Scalar diquark II: the Nakanishi case U‘/J IIIIII
—@ )
@ Quark propagator:
—ig+M
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Scalar diquark Il: the Nakanishi case &?
—@ )
@ Quark propagator:
—ig+M
S(q) - q2 + M2

@ Bethe-Salpeter amplitude (1 out of 4 structures):

% (g, K) = ins CNOF /1 dz c _222,)
(a5 4 g
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Scalar diquark Il: the Nakanishi case (ﬁ?
—@ )
@ Quark propagator:
—ig+ M
S(q) - q2 + M2

@ Bethe-Salpeter amplitude (1 out of 4 structures):

% (g, K) = ins CNOF /1 dz c _222)
(a5 4 g

@ The Nakanishi case leads to a non trivial DA:

M2 In [1 + A’;—zx(l - x)}

¢(X)O<1_ﬁ x(1—x)

C. Mezrag (INFN Baryon PDA and Beyond December 5th, 2017 13 / 34
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Scalar DA behaviour

M2 In 1+ ,\’f,—zzx(l - x)]
K2 x(1—x)

— Asymptotic
=== K"2 =4M"2
s KA2= 16 MA2
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Scalar DA behaviour

M2 In 1+ ,\’f,—zzx(l - x)]

o) =N 1_K2 x(1—x)

— Asymptotic N
- KM2 = 4MR2 3_?:

- KA2 = 16 MA2 <

0.0 R R R 4
0.0 0.25 0.50 0.75 1.0
X
Pion figure from L. Chang et al., PRL 110 (2013)
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Scalar DA behaviour

M2 In 1+ ,\’f,—zzx(l —x)]
o) =N I_W x(1—x)

— Asymptotic N
——- KM =4M2 k)
&
- K2 =16 MA2 <
0.0\ : : : .
0.0 0.25 0.50 0.75 1.0
X
Pion figure from L. Chang et al., PRL 110 (2013)
This extended version of the DA seems promising! )
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Scalar DA behaviour

(3

M2 In 1+ ,\’%x(l - x)]
K2 x(1—x)

o) =N [1-

Nota Bene

This PDA model can be used for meson easily, replacing /\};*22 — «, where
become a free parameter € [0, +00] controlling the curvature of the PDA.
This model has two main features:

@ explore a region where the PDA is broader than the asymptotic one,

but remained peaked at x = 1/2.

@ has linear endpoint behaviour.
Such a model can for instance be used to explore the effect of the PDA
curvature in DVMP, for instance with PARTONS.

See CM et al. arXiv 1711.09101
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AV diquark DA IN

S OIS o

@ Quark propagator:
—ig+ M
5(9) = 557
@2+ M
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AV diquark DA o

S OIS o

@ Quark propagator:
—ig+ M
S@=a e
?+M
@ Bethe-Salpeter amplitude (2 out of 8 structures):

1 2
1_
(e k) = Ot ) [ ae 022
-1 [(q—TZK) +/\3}
. K -
= ,<7N_K“K2 — Chiral even
o K-q (—irl'g + igrl") — Chiral odd
. g+ igr iral o

2 2 2
q*(K — q)*VK
Baryon PDA and Beyond December 5%, 2017 15 / 34



Comparison with the p meson &‘/'2

AV diquark p meson

16+

14+

-=- 1, DA
— 7 (Asymptotic) DA I~
longitudinal part .
- — transverse part i
—- = transverse part with only a, <\
o |
- - - -asymptotic
0.0 h n n N
0.0 0.2 04 0.6 08 1.0
X

p figure from F. Gao et al., PRD 90 (2014)

16 / 34
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Comparison with the p meson N

AV diquark p meson

16+

-=- 1, DA
— 71 (Asymptotic) DA - S
/A AR
06} //_~ longitudinal part BAT
04 R - — transverse part A
MU —-— transverse part with only a, L\
0.2 ~--=pion
g - - - -asymptotic
0.0 h n n N
0.0 0.2 0.4 0.6 0.8 1.0
X

p figure from F. Gao et al., PRD 90 (2014)

@ Same “shape ordering” — ¢, is flatter in both cases.

e Farther apart compared to the p meson case.
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Modeling the Faddeev Amplitude
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Faddeev Amplitude INFN

@ Scalar case:

si(K, P) :Nl/l dz (1-2)

@ AV case (2 out of 6 structures):

(1-2°)
(k= 152P)* + 1

AYK,P) = (vw"—ivﬁ’“) /_11012{
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Results in the scalar channel

01 02 03 04 05 06 07 05 09 01 02 03 04 05 06 07 05 09

u(x u(xy)

Asymptotic DA Extended case: T

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 05 09

u(x, u(xy)

Point-like case: ¢ Extended case: ¢
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Results in the scalar channel

01 02 03 04 05 06 07 08 09

u x;
Point-like case: ¢
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Results in the scalar channel

01 02 03 04 05 06 07 05 09 01 02 03 04 05 06 07 05 09

u(x u(xy)

Asymptotic DA Extended case: T

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 05 09

u(x, u(xy)

Point-like case: ¢ Extended case: ¢
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Comparison with lattice |

< Xj ><p: ®X XI'SD(X17X27X3)
[ J
0.401
/'\N = = Lattice 2016
\7 035 = Lattice 2014
e Scalar Only
. = === Asymptotic Value
0.301
[ J [ J
1 2 3
i

Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02
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Complete results for ¢

@ We use the prediction from the Faddeev equation to weight the scalar
and AV contributions 65/35:

u(xy) os
15 0.6

07

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

u(x u(x
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Comparison with lattice |l

0.40r

-=- Asymptotic Value
= 035" = Lattice 2016
V = Lattice 2014
* e Scalar Only
0.30

e 65% Scalar +— 5%

v o0 Ik
(]

[

Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02
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Comparison with lattice

(]
0.40r ‘
e 65% Scalar +— 5%
A === Asymptotic Value
= L
V 0.35 = Lattice 2016
= Lattice 2014
. e Scalar Only
0.30r [ J
' o Evolved Results
(]
1 2 3

C. Mezrag (INFN)

[

Baryon PDA and Beyond

Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02
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Comparison with lattice [l

4510
4.0r
—_ @ Scalar
% @ Scalar + Evolution
& 35 W Lattice 2016
o
; Lattice 2014
(= [ Lattice
Z @ Scal+AV(es = 0.77)
< 3.0f @ Scal+AV(cs = 0.77)+Evo
2.5¢

Computations done by J. Segovia
Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02
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From Nucleon to Roper

02 5
0.8 0.8
u(x) 0.6 ey ™ ue) ’
| -0 d(x3) 2 0.6 d(x3) %).6 0.6 d(x5) 1
0.4 0.4 0.4
0.8 —1
02 0.2 0.2
-3
02 04 06 08 02 04 06 08 02 04 06 08
u(xy) u(xy) u(xy)

@ Results for the nucleon and Roper at 2 GeV.

@ The nucleon remains broader and the peak shifted toward large x;

@ The roper present a negative area consistently with our understanding
of n =1 excited states.

@ We provide a parametrisation of our results at 2 GeV.

CM et al., arXiv 1711.09101 submitted to PRL
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Form Factors IN

I h—
===

F(Q%) =N / [dx][dyi] [¢(xi, B Ho (i, vi Q2 G2 D)y, CB)
+T (i, GYHT (%, yin Q% G2, ) T (vi, )]
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Form Factors IN

I h—
===

F(Q%) = j\f/[d><i][dyi] [o(xi, 2 Ho(xis yi, Q% 2. C2)eoyis C5)

+T (i, GYHT (%, yin Q% G2, ) T (vi, )]

&y

e LO Kernel well known since more than 30 years...

o ...but different groups have argued different choices for the treatment
of scales:

» for the DA : ¢(Q?), o((min(x;) x Q)3)...,
» for the strong coupling constant :

aS(Q2)>as(< Xi >2 Q2)a O‘;eg(g(xi7.yj)o2)
@ Use of perturbative coupling vs. effective coupling?
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Very preliminary results

1.5¢
“'g 1.0r Co { — Q*FJ(Q?) with o,
3 L — QFQY) with ayyug
Stosp \ — Q'FI(Q) with apy

\ « Data From SLAC
0.0
0 5 10 15 20 25 30 35
0*(GeV?)
Data from Arnold et al. PRL 57
More work is required before we can conclude anything. J
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%W 2.

WORK IN PROGRESS
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TDA : A new understanding of hadron structure /~rFnN.

(0le? ul (1)1 (22)d¥(z3)|N, P)
1
(7, ple¥* ul (z1) 1y (22)d¥(z3)|N, P)

@ Transition Distribution Amplitude encodes the non-perturbative
information contain in an off-diagonal matrix element.

@ They can be measured in backward kinematics of DVMP.

L.L. Frankfurt et al., PRD 60 014010 (1999)

B. Pire and L. Szymanowski PRD 71 111501 (2005)
B. Pire and L. Szymanowski PLB 622 83 (2005)

K. Park et al., arXiv 1711.08486
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TDA: Entering the measurable era

o TDA formalism predict the
dominance of o7 at large Q2.

Gy > GOy y > Oy (nb/sr)

o Large 0,7 and o717 suggest a
large o contribution.

@ oy seems not too far from
theroretical predictions for o 7.

figure from K. Park et al., arXiv 1711.08486
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TDA: Entering the measurable era

o TDA formalism predict the
dominance of o7 at large Q2.

Gy > GOy y > Oy (nb/sr)

o Large 0,7 and o717 suggest a
large o contribution.

@ oy seems not too far from
theroretical predictions for o 7.

This hints toward measurable TDAs
in backward kinematics. J

figure from K. Park et al.,

arXiv 1711.08486
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TDAs vs. GPDs

TDAs exhibit similar to GPDs:
o They depend on {x;},&, A% u2.
@ They also obey polynomiality and can be written in terms of Spectral
Functions.

@ They reduce to the nucleon PDA when £ — 1 due to the soft pion
theorem, the same way, the pion GPD reduced itself to the pion PDA.
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TDAs vs. GPDs

(z

TDAs exhibit similar to GPDs:
o They depend on {x;},&, A% u2.

@ They also obey polynomiality and can be written in terms of Spectral
Functions.

@ They reduce to the nucleon PDA when £ — 1 due to the soft pion
theorem, the same way, the pion GPD reduced itself to the pion PDA.

Advantage of TDA

TDA are define through a pion bra (7, p| while GPDs through a nucleon bra
(N, p|. This simplifies significantly the computations, and TDAs appears to
be a natural intermediary steps between nucleon PDA and nucleon GPDs.
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Computing TDA

ﬂﬁ r o -

(S

figures from J.-P. Landsberg et al., PRD 85 054021 (2012)

@ Three different contribution coming from different kinematics.
@ We can compute the (b) involving only valence components.
@ The question is to know if we can apply the formalism of the inverse

Radon transform to obtain an extension on TDA fulfilling

polynomiality, the same way it as recently be developed for GPDs.

N. Chouika, CM et al., arXiv 1711.05108
N. Chouika, CM et al., arXiv 1711.11548
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Conclusion

The nucleon PDA can be described using a quark-diquark
approximation.

As a side-effect, we obtained a meson PDA parametrisation.

The comparison with lattice computations explains how the different
diquarks contribute to the total DAs, and the respective sensitivity of
the latter to the AV-diquarks.

We have obtained the first evaluation of the Roper PDA.
We have preliminary results on the nucleon Dirac form factors

Keep working on PDAs but using the numerical solution of DSEs.

Keep exploring hadron structures with algebraic PTIR model. TDAs
and GPDs are our targets.

C. Mezrag (INFN) Baryon PDA and Beyond December 5"', 2017 33 /34



Thank you for your attention
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Back up slides
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Pion distribution amplitude

Pas(x) =6x(1 — x)

1.5F

1.0t (8 )
3 =
< s

0.5+

%0 025 050 075 1.0

X

L. Chang et al. (2013) L. Chang et al. (2013)

@ Broad DSE pion DA is much more consistent with the form factor
than the asymptotic one.
@ The scale when the asymptotic DA become relevant is huge.
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N(1535)

Figure from V. Braun et /a.,Phys. Rev. D89, 094511 (2014)
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—
Beyond the Form Factors FEbh -

@ The form factor is only the first Mellin Moment of GPDs and GDAs.

@ The perturbative formula have been generalised to GPDs at large t
and GDAs at large s for mesons and baryons.

M. Diehl et al., PRD 61, (2000) 074029
C. Vogt, PRD 64, (2001), 057501
P. Hoodboy et al., PRL 92 (2004) 012003

B. Pire et al., PLB 639, (2006) 642-651

Can we use our DA models to get relevant
information on GPDs and GDAs for mesons and baryons?
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