

Groupement de Recherche Chromodynamique Quantique

Hadron energy-momentum tensor and mass decomposition

Based on [C.L., arXiv:1706.05853]

Outline

- 1. Hadron mass and energy-momentum tensor
- 2. Trace decomposition
- 3. Ji's decomposition
- 4. New decomposition
- 5. Summary

Lattice QCD

Ab initio mass calculation based on Euclidean space-time correlators $~\sim \sum e^{-E_n au}$

Unfortunately, little insight on where mass comes from ...

Energy-momentum tensor

Classical QCD energy-momentum tensor

$$T^{\mu\nu} = \overline{\psi}\gamma^{\mu} \frac{i}{2} \overset{\leftrightarrow}{D}{}^{\nu} \psi - G^{a\mu\alpha} G^{a\nu}{}_{\alpha} + \frac{1}{4} \eta^{\mu\nu} G^2$$

Translation invariance

energy-momentum conservation

$$\partial_{\mu}T^{\mu\nu}=0$$

Renormalized trace of the QCD EMT

$$T^{\mu}_{\ \mu} = \underbrace{\frac{\beta(g)}{2g}\,G^2}_{2g} + \left(1 + \gamma_m\right)\overline{\psi}m\psi$$
 Trace Quark mass matrix

[Crewther (1972)]
[Chanowitz, Ellis (1972)]
[Nielsen (1975)]
[Adler, Collins, Duncan (1977)]
[Collins, Duncan, Joglekar (1977)]
[Nielsen (1977)]

Textbook decomposition

Forward matrix element

$$\langle P|T^{\mu\nu}(0)|P\rangle = 2P^{\mu}P^{\nu}$$

$$\langle P'|P\rangle = 2P^0 (2\pi)^3 \delta^{(3)}(\vec{P}' - \vec{P})$$

Trace decomposition

$$\begin{split} 2M^2 &= \langle P|T^{\mu}_{\ \mu}(0)|P\rangle \\ &= \underline{\langle P|\frac{\beta(g)}{2g}\,G^2|P\rangle} + \underline{\langle P|(1+\gamma_m)\,\overline{\psi}m\psi|P\rangle} \\ & \sim \textbf{89\%} \\ & \sim \textbf{11\%} \end{split}$$

[Shifman, Vainshtein, Zakharov (1978)]
[Luke, Manohar, Savage (1992)]
[Donoghue, Golowich, Holstein (1992)]
[Kharzeev (1996)]
[Bressani, Wiedner, Filippi (2005)]
[Roberts (2017)]
[Krein, Thomas, Tsushima (2017)]

- Manifestly covariant
- Compatible with Gell-Mann-Oakes-Renner formula for pion
- **Solution** Depends on state normalization
- No spatial extension
- No clear relation to energy

Ji's decomposition

[Ji (1995)] [Gaite (2013)]

Separation of trace and traceless parts

$$T^{\mu\nu} = \bar{T}^{\mu\nu} + \hat{T}^{\mu\nu} \qquad \qquad \hat{T}^{\mu\nu} = \frac{1}{4} \eta^{\mu\nu} T^{\alpha}_{\alpha}$$

Forward matrix elements

$$\langle P|\bar{T}^{\mu\nu}(0)|P\rangle = 2\left(P^{\mu}P^{\nu} - \frac{1}{4}\eta^{\mu\nu}M^{2}\right)$$
$$\langle P|\hat{T}^{\mu\nu}(0)|P\rangle = \frac{1}{2}\eta^{\mu\nu}M^{2}$$

Virial decomposition

$$M = \langle T^{00} \rangle|_{\vec{P} = \vec{0}}$$

$$= \langle \bar{T}^{00} \rangle|_{\vec{P} = \vec{0}} + \langle \hat{T}^{00} \rangle|_{\vec{P} = \vec{0}}$$

$$= \langle \bar{T}^{00} \rangle|_{\vec{P} = \vec{0}} + \langle \hat{T}^{00} \rangle|_{\vec{P} = \vec{0}}$$

$$= \langle \bar{T}^{00} \rangle|_{\vec{P} = \vec{0}} + \langle \hat{T}^{00} \rangle|_{\vec{P} = \vec{0}}$$

Ji's decomposition

[Ji (1995)]

Separation of quark and gluon contributions

$$\bar{T}^{\mu\nu} = \bar{T}_a^{\mu\nu} + \bar{T}_a^{\mu\nu}$$
 $\hat{T}^{\mu\nu} = \hat{T}_m^{\mu\nu} + \hat{T}_a^{\mu\nu}$

Forward matrix elements

$$\langle P | \bar{T}_i^{\mu\nu}(0) | P \rangle = 2 \, a_i(\mu^2) \left(P^{\mu} P^{\nu} - \frac{1}{4} \, \eta^{\mu\nu} M^2 \right)$$

$$\langle P | \hat{T}_i^{\mu\nu}(0) | P \rangle = \frac{1}{2} \, b_i(\mu^2) \, \eta^{\mu\nu} M^2$$

$$\sum_i a_i(\mu^2) = \sum_i b_i(\mu^2) = 1$$

Ji's decomposition

[Gao et al. (2015)]

$$M = M_q + M_g + M_m + M_a$$

$$\mu = 2 \, \mathrm{GeV}$$
 ~ 33% ~ 34% ~ 11% ~ 22%

$$M_q = \langle \bar{T}_q^{00} \rangle|_{\vec{P} = \vec{0}} - \frac{3}{1 + \gamma_m} \langle \hat{T}_m^{00} \rangle|_{\vec{P} = \vec{0}}$$

$$M_g = \langle \bar{T}_g^{00} \rangle|_{\vec{P} = \vec{0}}$$

$$M_m = \frac{4 + \gamma_m}{1 + \gamma_m} \langle \hat{T}_m^{00} \rangle|_{\vec{P} = \vec{0}}$$

$$M_a = \langle \hat{T}_a^{00} \rangle|_{\vec{P} = \vec{0}}$$

Proper normalization

Scale-dependent interpretation in the rest frame

Clear relation to energy distribution

Pressure effects not taken into account

Continuum mechanics

[C.L. (2017)]

Interpretation of the EMT components

Analogy with relativistic hydrodynamics

New decomposition

[C.L. (2017)]

Mass as the total internal energy

$$M = \sum_{i} U_{i} \qquad U_{i} = \varepsilon_{i} V$$

Stability condition energy-momentum conservation

$$\sum_{i} p_{i} = 0 \qquad \longrightarrow \qquad \sum_{i} \bar{C}_{i}(0) = 0 \qquad \longrightarrow \qquad \sum_{i} A_{i}(0) = 1$$

Nucleon mass decomposition

$$M = U_q + U_g \qquad \qquad p_q = -p_g$$

$$\mu = 2 \, {\rm GeV} \qquad \qquad {\bf \sim 44\%} \qquad {\bf \sim 56\%} \qquad \qquad {\bf \sim 11\%}$$

Some numerology

At the center of the Sun

$$\rho_{\odot} \approx 1.6 \times 10^5 \,\mathrm{kg/m}^3$$
 $p_{\odot} \approx 2.5 \times 10^{16} \,\mathrm{N/m}^2$

$$p_{\odot} / \rho_{\odot} c^2 \approx 1.7 \times 10^{-6}$$

Inside a nucleon

$$\rho_N \approx 2 \times 10^{17} \,\mathrm{kg/m}^3$$
 $p_N \approx 2 \times 10^{33} \,\mathrm{N/m}^2$
$$p_N/\rho_N c^2 \approx 0.11$$

Inside a black hole

$$\rho_{\rm BH} = \frac{3c^6}{32\pi G^3 M^2}$$
 $\rho_{\rm BH}^{\odot} \approx 1.8 \times 10^{19} \,\mathrm{kg/m}^3$
 $\rho_{\rm BH}^N \approx 2.6 \times 10^{133} \,\mathrm{kg/m}^3$

Summary

Ji's decomposition

Pressure-volume work equivalent

New decomposition

