Ultra-forward particle production from CGC+Lund fragmentation

Phys. Rev. D 94, 054004

Pablo Guerrero Rodríguez^a
in collaboration with
Javier L. Albacete and Yasushi Nara^b

^a CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada ^bAkita International University, Yuwa

> 'GdR QCD 2017' session plénière December 5, 2017 Saclay

Outline

1. Introduction

Forward production in the Color Glass Condensate: Hybrid formalism

2. The Monte-Carlo event generator

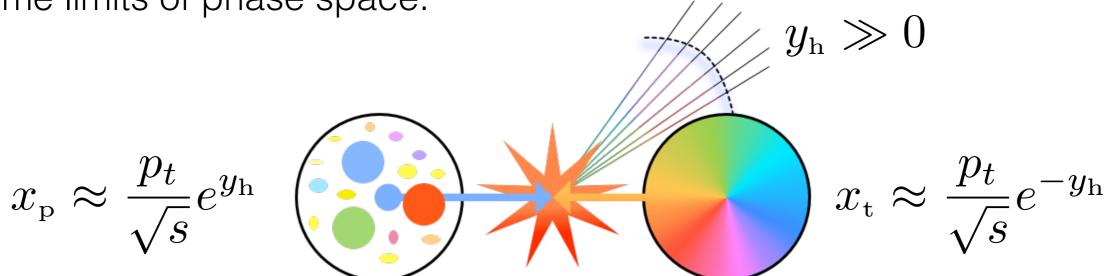
- Perturbative parton production: implementation of DHJ formula
- Multiple scattering: eikonal model
- Hadronization: Lund fragmentation model

3. Results:

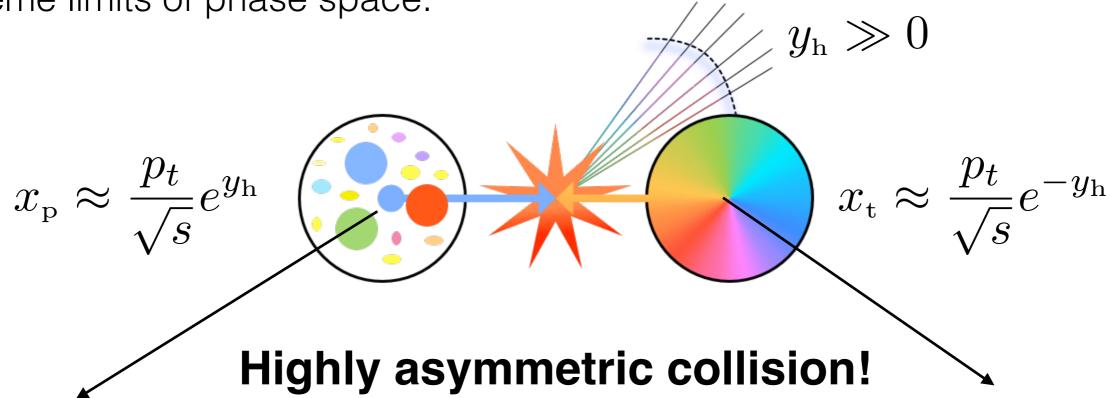
- RHIC: d-Au @ 200 GeV
- LHCf: p-p @ 7 TeV
- LHCf: p-Pb @ 5.02 TeV
- LHCf: nuclear modification factor $R_{
 m p-Pb}$ @ 5.02 TeV

4. Conclusions, future prospects

• The analysis of the very forward region of particle production in high-energy collisions gives us access to the wave functions of colliding objects in the extreme limits of phase space.



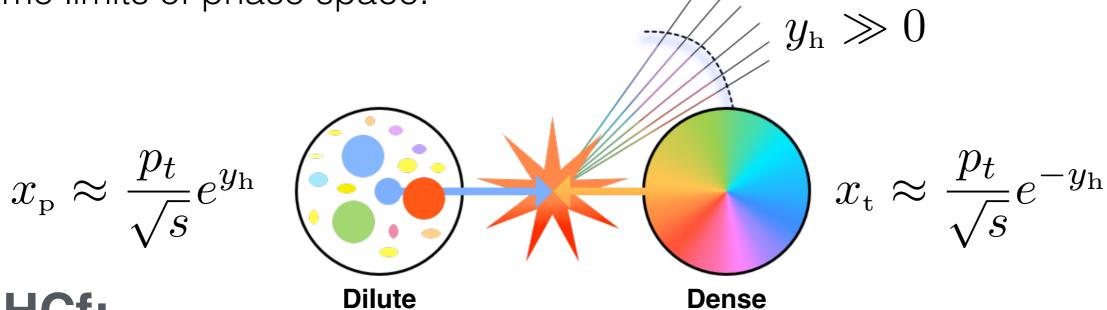
• The analysis of the very forward region of particle production in high-energy collisions gives us access to the wave functions of colliding objects in the extreme limits of phase space.

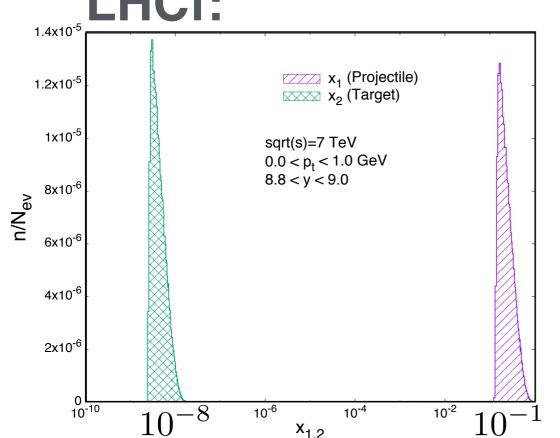


Dilute ensemble of fast valence quarks

Dense pack of 'slow' radiated gluons

• The analysis of the very forward region of particle production in high-energy collisions gives us access to the wave functions of colliding objects in the extreme limits of phase space.





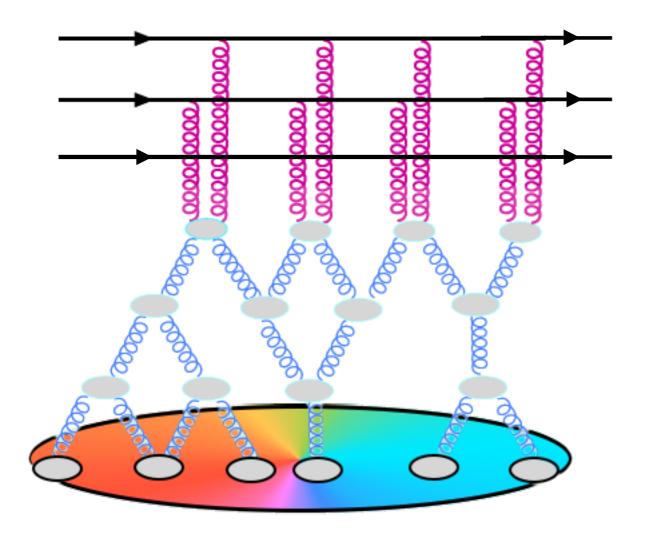
$$\sqrt{s} = 7 \text{ TeV}$$
 $p_t \lesssim 1 \text{ GeV}$
 $8.8 \leq y \leq 9.0$

$$\begin{vmatrix} x_p \sim 10^{-1} \div 1 \\ x_t \sim 10^{-8} \div 10^{-9} \end{vmatrix}$$

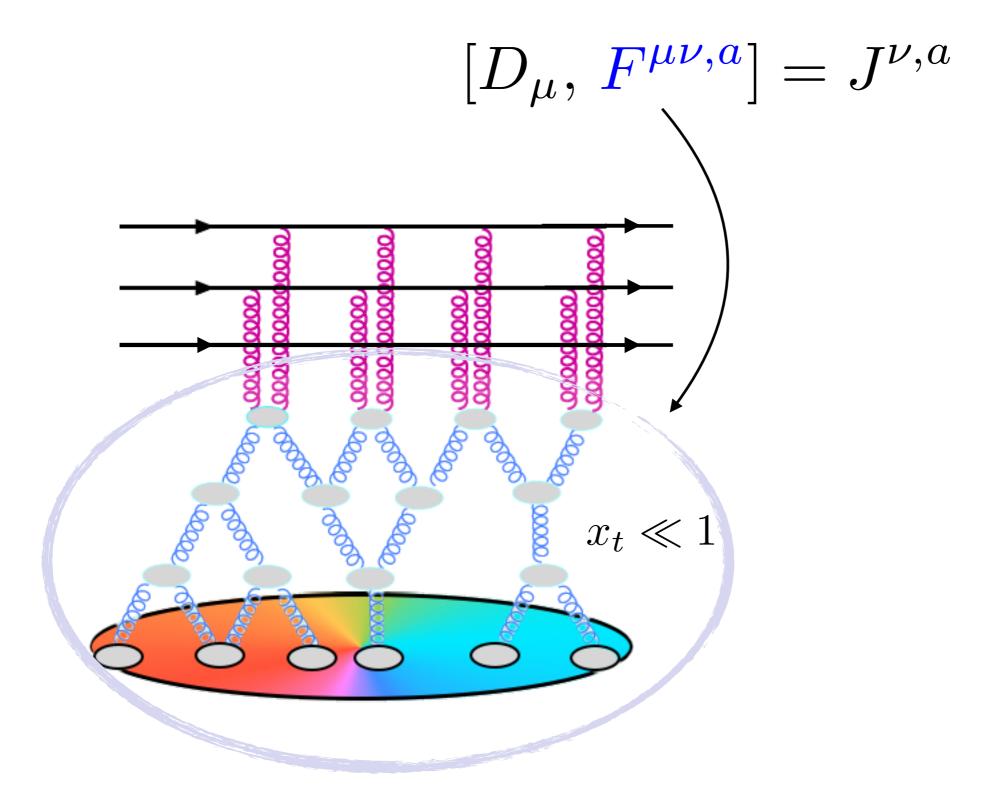
Smallest Bjorken-x values observed yet

Color Glass Condensate:

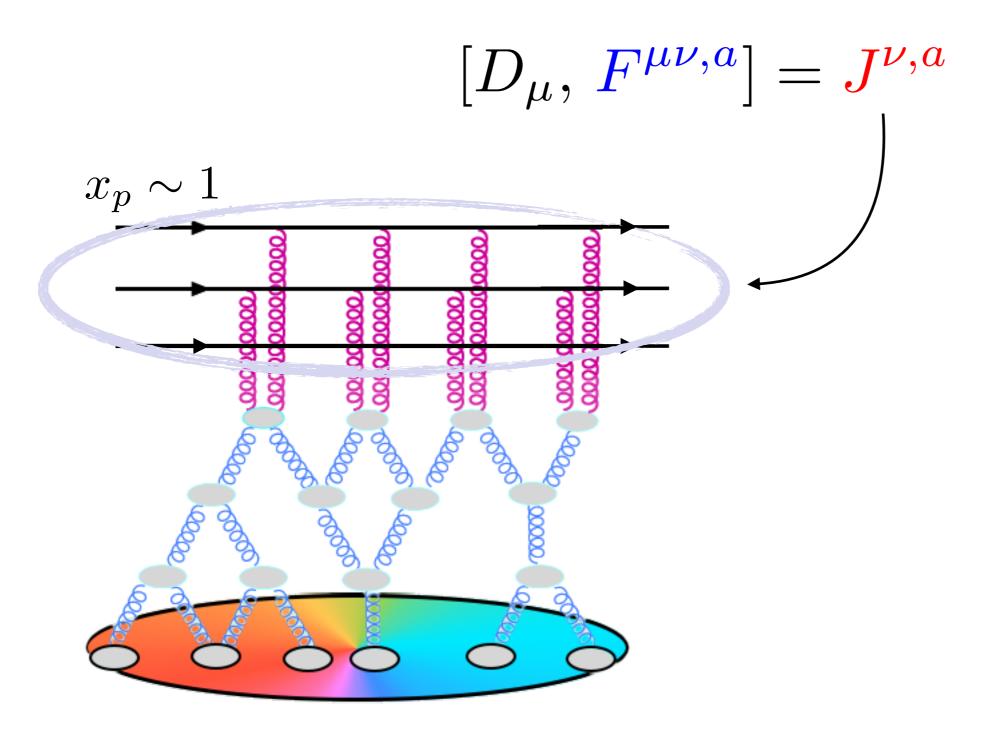
$$[D_{\mu}, F^{\mu\nu,a}] = J^{\nu,a}$$



Color Glass Condensate:

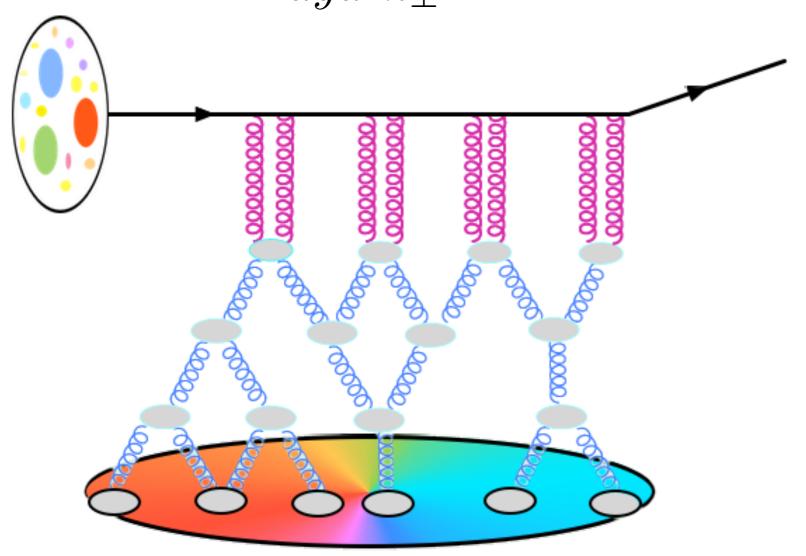


Color Glass Condensate:

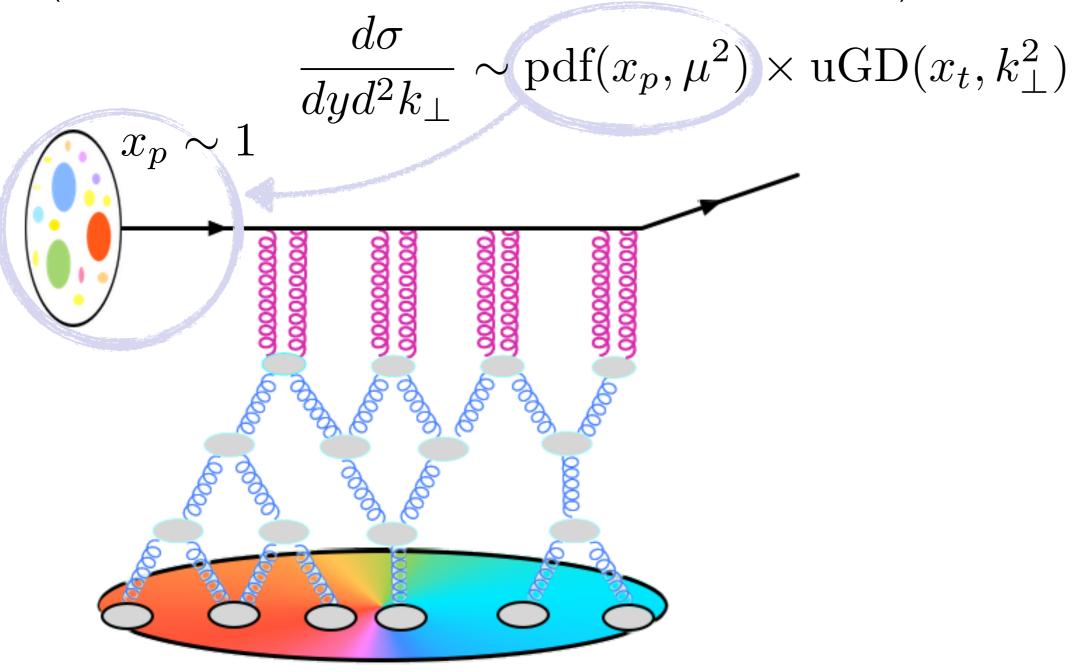


Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$

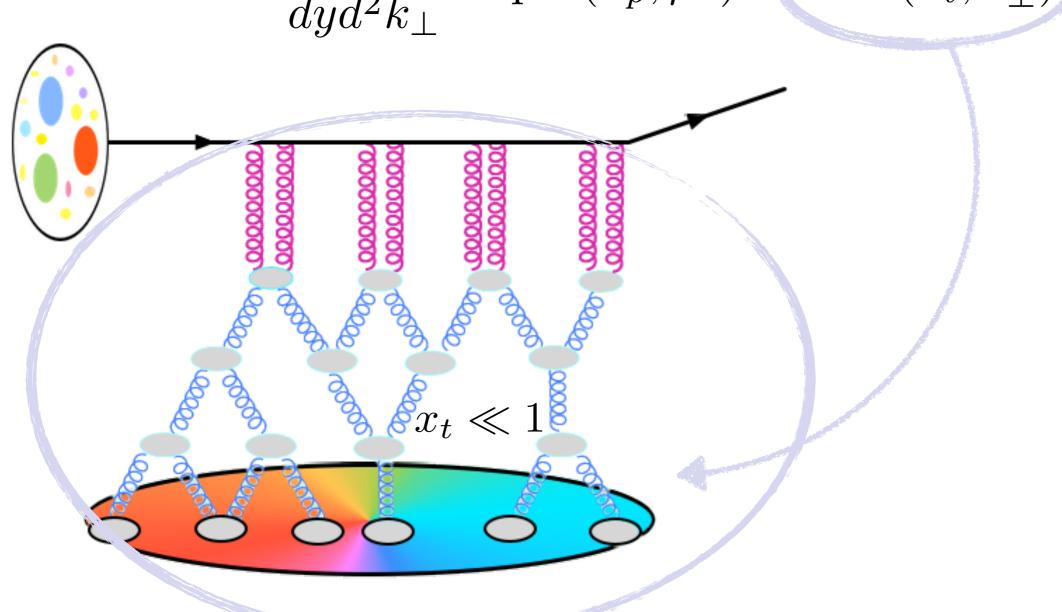


Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);



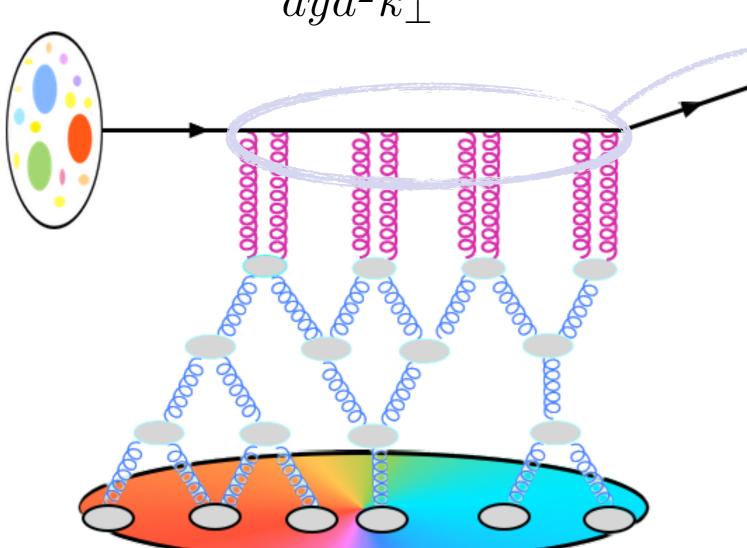
Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$



Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$



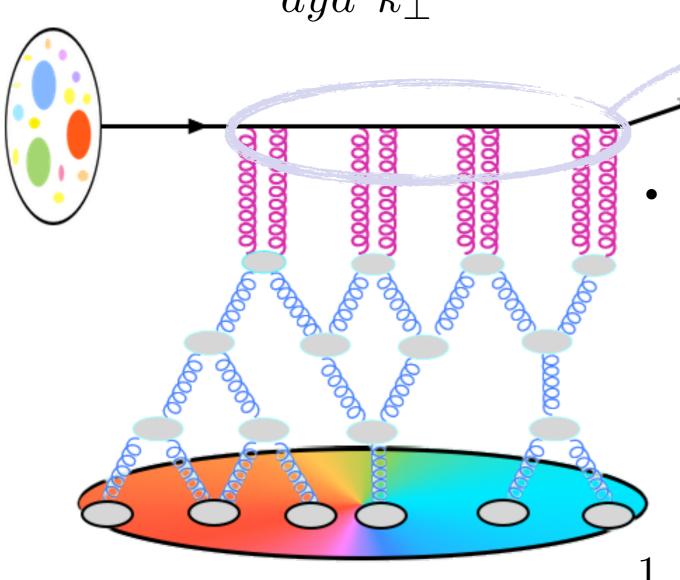
Strong color field: $A(x) \sim \frac{1}{g}$

Multiple scattering:

All terms of order $gA(x) \sim O(1)$ must be resummed.

Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$



Strong color field: $A(x) \sim \frac{1}{3}$

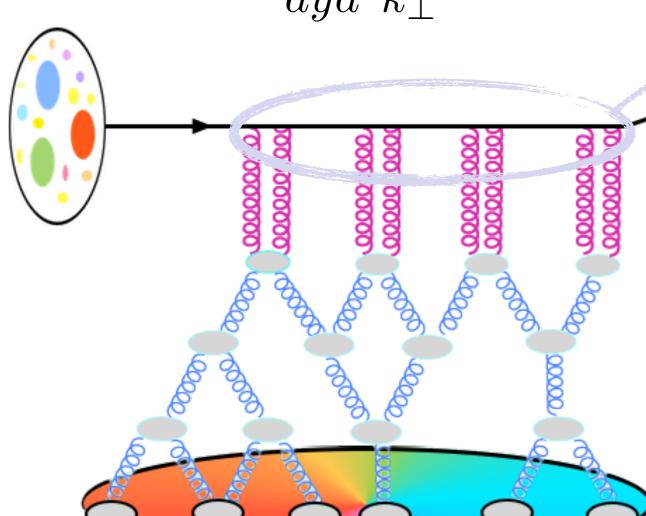
Multiple scattering:

All terms of order $g\mathcal{A}(x) \sim \mathcal{O}(1)$ must be resummed.

Resummation to all orders + eikonal approximation: Wilson line $U(z_{\perp})$

Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$



Strong color field: $A(x) \sim \frac{1}{g}$

Multiple scattering:

All terms of order $gA(x) \sim O(1)$ must be resummed.

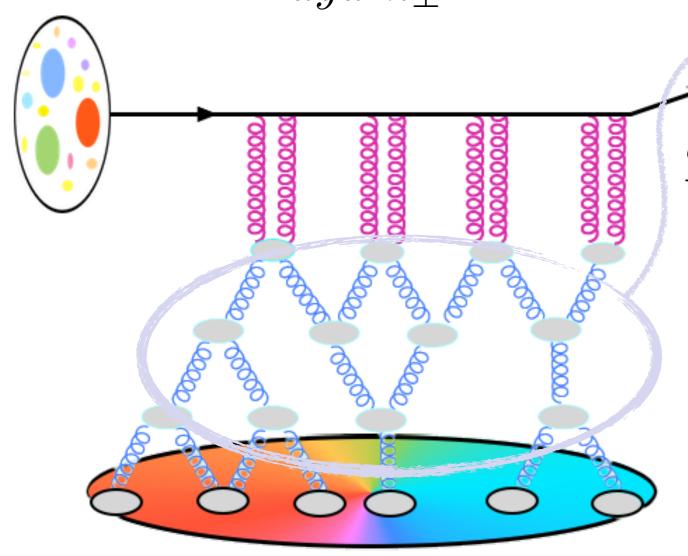
- Resummation to all orders + eikonal approximation: Wilson line $U(z_{\perp})$
- Unintegrated gluon distribution:

$$uGD(x_0, k_t) = FT \left[1 - \frac{1}{N_c} \langle tr(UU^{\dagger}) \rangle_{x_0} \right]$$

Dipole scattering amplitude

Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$



Non-linear small-x evolution:

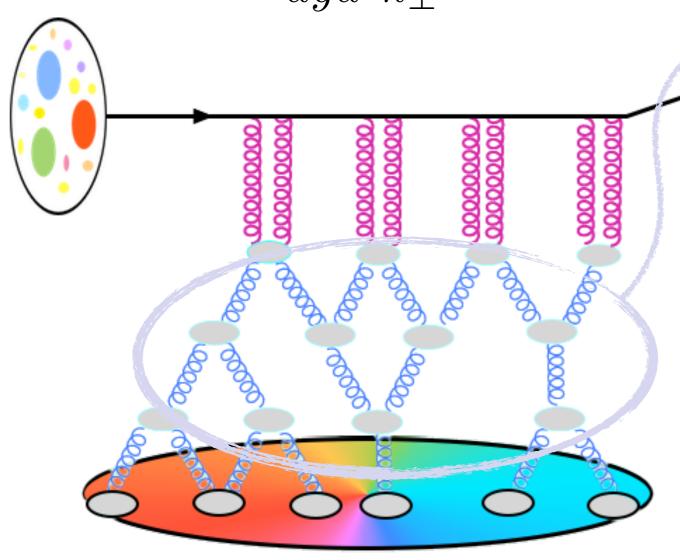
BK-JIMWLK equations:

$$\frac{\partial \mathbf{u}\mathbf{G}\mathbf{D}(x, k_t)}{\partial \ln(x_0/x)} \sim \mathcal{K} \otimes \mathbf{u}\mathbf{G}\mathbf{D} - \mathbf{u}\mathbf{G}\mathbf{D}^2$$
Radiation Recombination

BK: evolution of 2-point function JIMWLK: (coupled) evolution of all n-point functions

Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$



Non-linear small-x evolution:

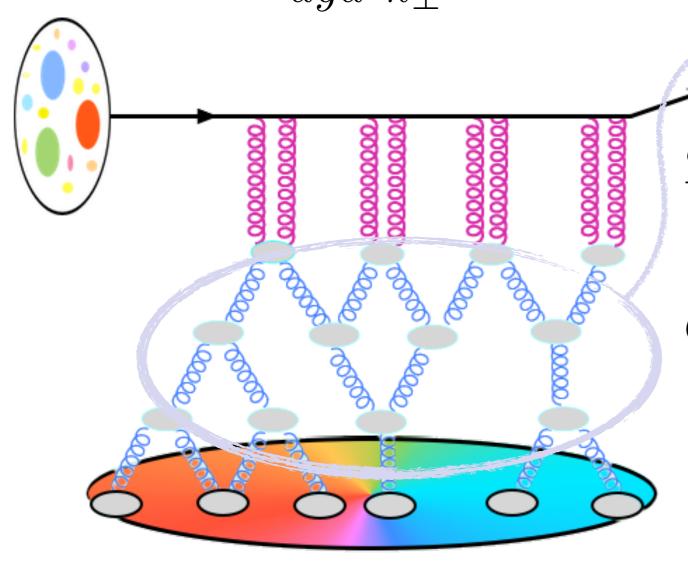
BK-JIMWLK equations:

$$\frac{\partial \mathbf{u}\mathbf{G}\mathbf{D}(x, k_t)}{\partial \ln(x_0/x)} \sim \mathcal{K} \otimes \mathbf{u}\mathbf{G}\mathbf{D} - \mathbf{u}\mathbf{G}\mathbf{D}^2$$
Radiation Recombination

 $Q_s^2(x)$: Signals when radiation and recombination terms become parametrically of the same order

Hybrid formalism: the CGC interpretation of dilute-dense interactions
 (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464);

$$\frac{d\sigma}{dyd^2k_{\perp}} \sim \mathrm{pdf}(x_p, \mu^2) \times \mathrm{uGD}(x_t, k_{\perp}^2)$$



Non-linear small-x evolution:

BK-JIMWLK equations:

$$\frac{\partial \mathbf{u}\mathbf{G}\mathbf{D}(x, k_t)}{\partial \ln(x_0/x)} \sim \mathcal{K} \otimes \mathbf{u}\mathbf{G}\mathbf{D} - \mathbf{u}\mathbf{G}\mathbf{D}^2$$
Radiation Recombination

 $Q_s^2(x)$: Signals when radiation and recombination terms become parametrically of the same order

$$Q_s \gtrsim 1 \text{ GeV}$$

• Hybrid formalism (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

$$\frac{d\sigma^{h_1 h_2 \to (q/g)X}}{dy d^2 k_t} = \frac{K}{(2\pi)^2} \frac{\sigma_0}{2} x_p f_{(q/g)/h_1}(x_p, \mu^2) N_{(F/A), h_2}(x_t, k_t^2)$$

• Hybrid formalism (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

$$\frac{d\sigma^{h_1 h_2 \to (q/g)X}}{dy d^2 k_t} = \frac{K}{(2\pi)^2} \frac{\sigma_0}{2} x_p f_{(q/g)/h_1}(x_p, \mu^2) N_{(F/A), h_2}(x_t, k_t^2)$$

- Proton PDF: CTEQ6 LO set (J. Pumplin et. al., JHEP 07 (2002) 012)
- Default factorization scale:

LHCf:
$$\mu = \max\{k_t, Q_s\}$$
RHIC (forward): $Q_s < 1 \text{ GeV} \longrightarrow \mu = 1.5 \text{ GeV}$

• Hybrid formalism (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

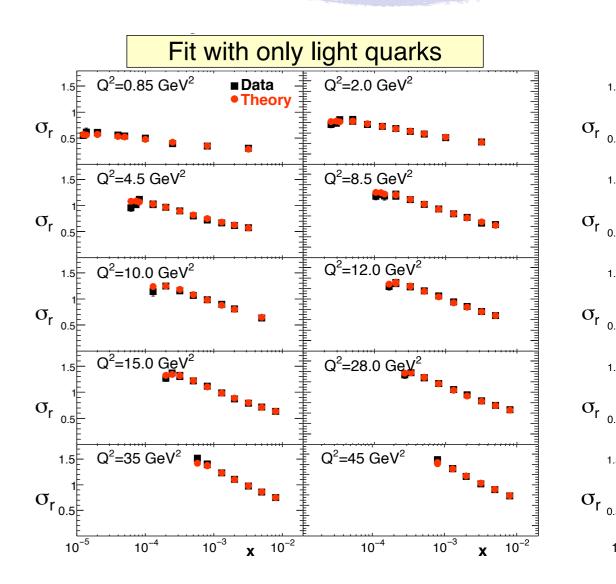
$$\frac{d\sigma^{h_1 h_2 \to (q/g)X}}{dy d^2 k_t} = \frac{K}{(2\pi)^2} \frac{\sigma_0}{2} x_p f_{(q/g)/h_1}(x_p, \mu^2) N_{(F/A), h_2}(x_t, k_t^2)$$

 uGD's: Fourier transforms of dipole scattering amplitudes.

$$N_{F(A)}(x, k_t) = \int d^2 \mathbf{r} \ e^{-i\mathbf{k_t} \cdot \mathbf{r}} \left[1 - \mathcal{N}_{F(A)}(x, r) \right].$$

• Small-x evolution: We take parametrization of $\mathcal{N}_{F(A)}(x,r)$ from the AAMQS fits to data on the structure functions measured in e+p scattering at HERA:

rc-BK evolution



J. L. Albacete, N. Armesto, J. G. Milhano and C. A. Salgado, Phys. Rev. D80 (2009) 034031.

J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga-Arias and C. A. Salgado, Eur. Phys. J. C71 (2011) 1705

• Hybrid formalism (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

$$\frac{d\sigma^{h_1 h_2 \to (q/g)X}}{dy d^2 k_t} = \frac{K}{(2\pi)^2} \frac{\sigma_0}{2} x_p f_{(q/g)/h_1}(x_p, \mu^2) N_{(F/A), h_2}(x_t, k_t^2)$$

rc-BK evolution

Initial conditions for evolution:

$$\mathcal{N}_F(x_0, r) = 1 - \exp\left[-\frac{\left(r^2 Q_{s0}^2\right)^{\gamma}}{4} \log\left(\frac{1}{\Lambda r} + e\right)\right]$$

$$x_0 = 10^{-2}$$
 $\gamma = 1.101$ $Q_{s0}^2 = 0.157 \text{ GeV}^2$

• Hybrid formalism (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

$$\frac{d\sigma^{h_1 h_2 \to (q/g)X}}{dy d^2 k_t} = \frac{K}{(2\pi)^2} \frac{\sigma_0}{2} x_p f_{(q/g)/h_1}(x_p, \mu^2) N_{(F/A), h_2}(x_t, k_t^2)$$

rc-BK evolution

Initial conditions for evolution:

$$\mathcal{N}_F(x_0, r) = 1 - \exp\left[-\frac{\left(r^2 Q_{s0}^2\right)^{\gamma}}{4} \log\left(\frac{1}{\Lambda r} + e\right)\right]$$

$$x_0 = 10^{-2}$$
 $\gamma = 1.101$ $Q_{s0}^2 = 0.157 \text{ GeV}^2$

uGD's for nuclear target:

$$Q_{s0,nucleus}^2 = A^{1/3}Q_{s0,proton}^2$$

$$\uparrow$$

$$Oomph \, \text{factor}$$

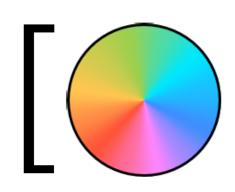
• Hybrid formalism (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

$$\frac{d\sigma^{h_1 h_2 \to (q/g)X}}{dy d^2 k_t} = \frac{K}{(2\pi)^2} \frac{\sigma_0}{2} x_p f_{(q/g)/h_1}(x_p, \mu^2) N_{(F/A), h_2}(x_t, k_t^2)$$

- Implicit integration in impact parameter \vec{b} : $\sigma_0/2$

Free fit parameter of AAMQS fits:

$$\frac{\sigma_0}{2} = 16.5 \text{ mb}$$



J. L. Albacete, N. Armesto, J. G. Milhano and C. A. Salgado, Phys. Rev. D80 (2009) 034031.

J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga-Arias and C. A. Salgado, Eur. Phys. J. C71 (2011) 1705

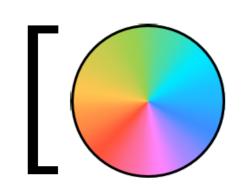
• Hybrid formalism (A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, Nucl. Phys. A765 (2006) 464):

$$\frac{d\sigma^{h_1 h_2 \to (q/g)X}}{dy d^2 k_t} = \frac{K}{(2\pi)^2} \frac{\sigma_0}{2} x_p f_{(q/g)/h_1}(x_p, \mu^2) N_{(F/A), h_2}(x_t, k_t^2)$$

• Implicit integration in impact parameter $ec{b}$: $\sigma_0/2$

Free fit parameter of AAMQS fits:

$$\frac{\sigma_0}{2} = 16.5 \text{ mb}$$

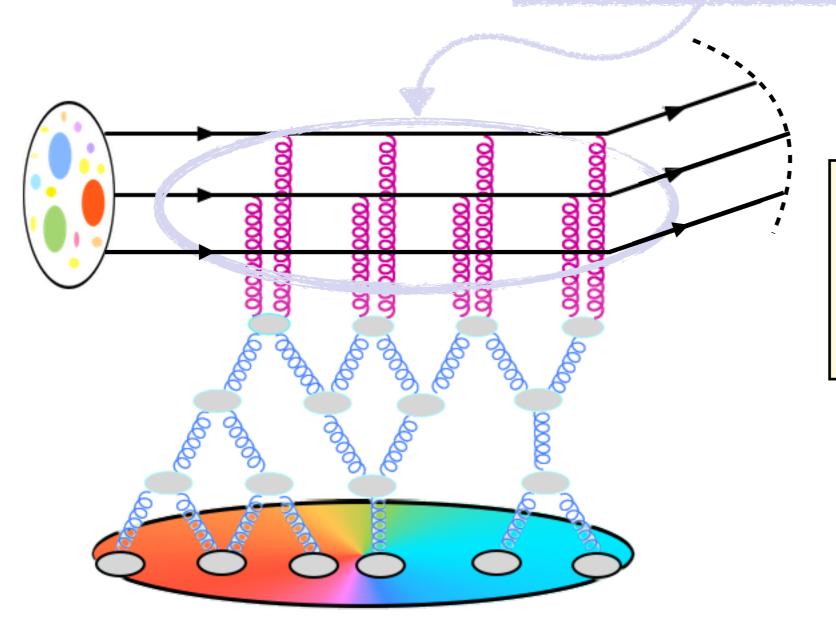


- ullet K-factor: not the result of any calculation. May account for:
 - Higher order corrections
 - Non-perturbative effects
 - (...)

• Our approach:

Monte-Carlo implementation of

Hybrid formalism + Multiple parton scattering



Not to be confused with multiple gluon scattering encoded in uGD's

• Number of **independent** hard scatterings according to Poisson probability distribution of mean n, where:

$$n(b,s) = T_{\rm pp}(b)\sigma_{\scriptscriptstyle
m DHJ}(s)$$

• Number of **independent** hard scatterings according to Poisson probability distribution of mean n, where:

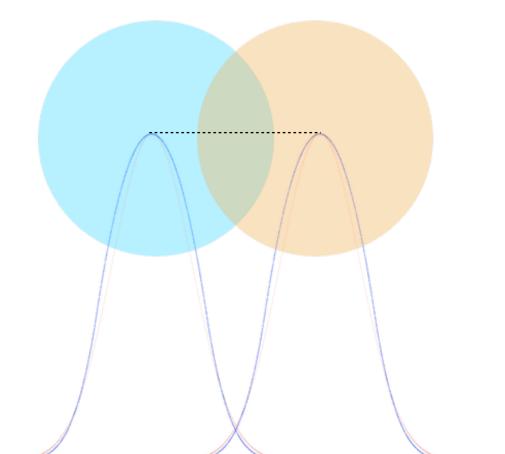
$$n(b,s) = T_{\rm pp}(b)\sigma_{\scriptscriptstyle
m DHJ}(s)$$

• b randomly generated between 0 and b_{max} :

$$b_{max} = \sqrt{\frac{\sigma_{nd}}{\pi}}$$

Spatial overlap: convolution of two Gaussians.

$$T_{\rm pp}(b) = \frac{1}{4\pi B} \exp\left(-\frac{b^2}{4B}\right)$$



• Number of **independent** hard scatterings according to Poisson probability distribution of mean n, where:

$$n(b,s) = T_{\mathrm{pp}}(b)\sigma_{\mathrm{DHJ}}(s)$$

• b randomly generated between 0 and b_{max} :

$$b_{max} = \sqrt{\frac{\sigma_{nd}}{\pi}}$$

• For a nuclear target of mass number A:

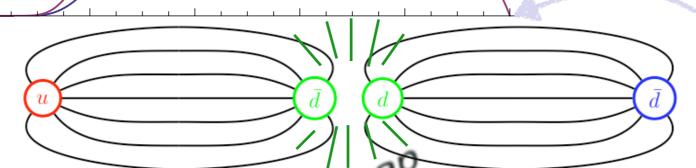
$$T_{\rm pA}(b) = \frac{1}{\pi R_{\rm p}^2 (A^{2/3} + 1)} \exp\left(\frac{-b^2}{R_{\rm p}^2 (A^{2/3} + 1)}\right)$$

$$R_{\rm A}^2 = R_{\rm p}^2 A^{2/3}$$

Hadronization: Lund fragmentation model

1.0

• Simple but powerful picture of hadron production based on the breaking of strings between partons:



String temingn: 16.4

 $a = 0.5, m_{\perp}$

Figure 31: Normanzea Luna symmetric tragmentation function, for fix

• Probabilityriation of breaking lay representation with (blue) $to_q^2 0 + 9p(red)$, with fixed variation of the b parameter, from 0.5 (red) to 2 (blue) GeV^{-2} , with fixed

Prob
$$(m_q^2, p_{\perp q}^2) \propto \exp\left(\frac{-\pi m_q^2}{\kappa}\right) \exp\left(\frac{-\pi p_{\perp q}^2}{\kappa}\right)$$

string picture is substantially more predictive than for the flavor selection ment that the fragmentation be independent of the sequence in which broken (causality) imposes a "left-right symmetry" on the possible form of the fragmentation f(z), with the solution

P. Skands
$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(-\frac{b \left(m_h^2 + p_{\perp h}^2\right)}{z}\right),$$

which is known as the *Lui*

As implemented in: **PYTHIA 8**

The a and b p
Pablo Guerrero Rodriguez (UGR)

shower

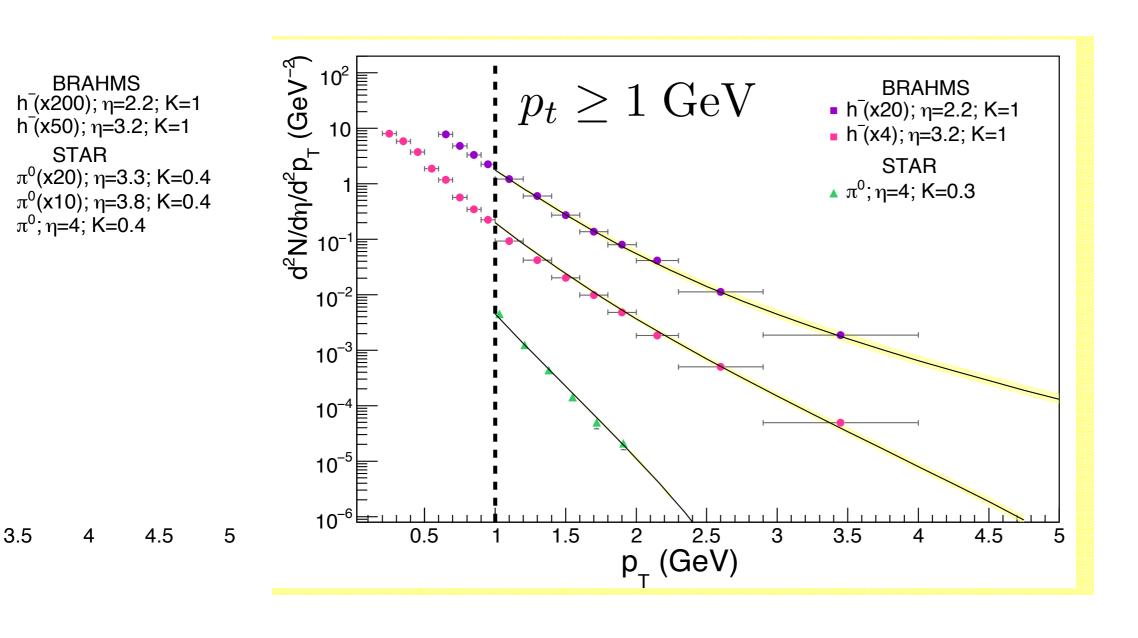
 $u(\vec{p}_{\perp 0}, p_{+})$ 29

left-and right hand sides respectively figure 30 b. 1.0 ne can thereby defined hadron in each step, with a mass that, for unstable hadrons, R Simple but whereful picture of hadron production based on the breaking of strings between partons:
The details of the individual string breaks are not known from fir model invokes the idea of exantition methanical tunneling, temperal temperal tunneling, temperal temperal tunneling, temperal sion of the energies 1 and 1 mass 6 symparted to the produced quarks 5, m_{\perp} Figure 31: Normalized Lund symmetric fragmentation function, for fix Probability riation of brheaking have between kippin with (brigher) to 9019 (rest); with fixed variation of the h parameter, from 0.5 (red) to 2 (blue) GeV-3, with fixe where m_q is the mass of the produced quant and p_{\perp} is the transverse it stritte prevaleus substessiallythetre prheigitive the notoothe flavor selectic ment that the fragmentation chain dependent of the sequence in which but of produced guarks in this model is independent of the quark, flavor, v $f(z) \propto -(1-z)^a \exp \left(\frac{1}{z}\right)$ P. Skands strin As implemented in: **PYTHIA 8** $Q_{\rm UV}$

Pablo Guerrero Rodriguez

Previous approaches:

$$\frac{d\sigma^{hadrons}}{d^{2}k_{\perp}dy} = \frac{d\sigma^{partons}_{\text{DHJ}}}{d^{2}k_{\perp}dy} \otimes D_{h/p}$$

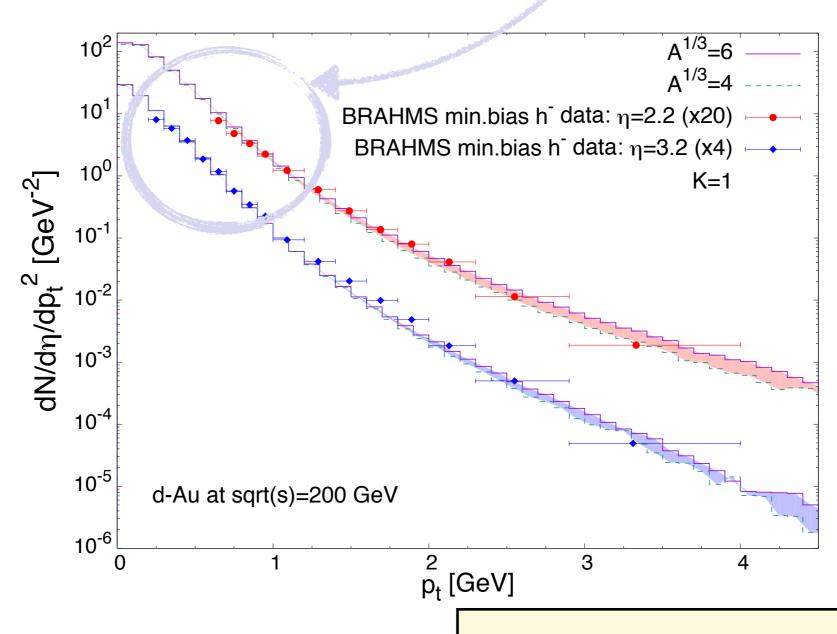


Albacete, Javier L. et al. Phys.Lett. B687 (2010) 174-179 arXiv:1001.1378 [hep-ph]

• Our approach:

Monte-Carlo implementation of

Hybrid formalism + Lund string fragmentation

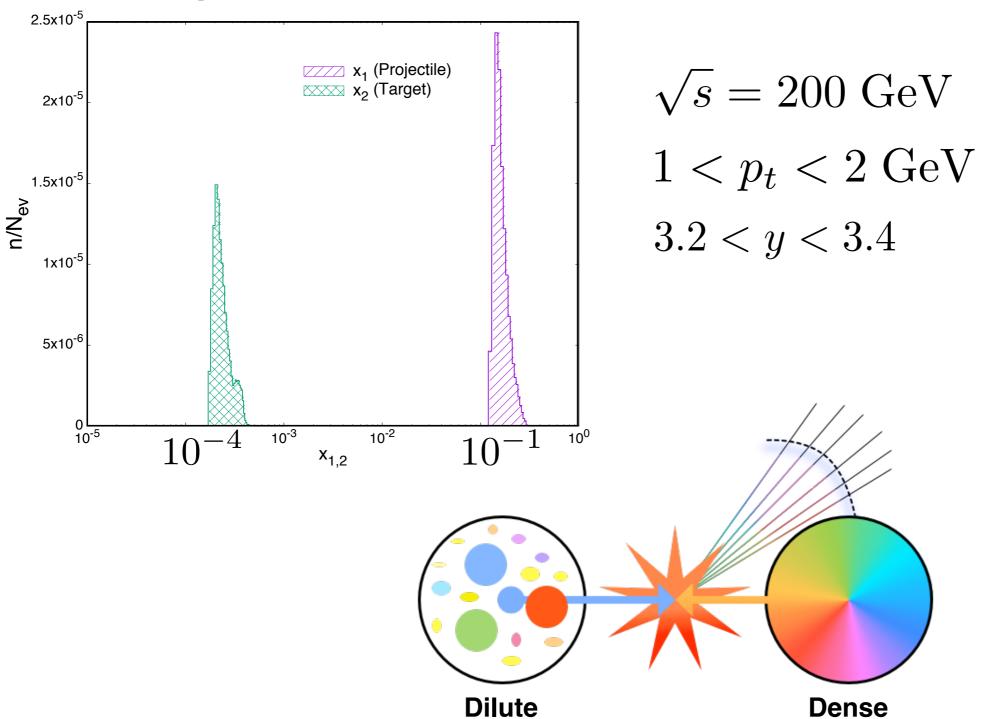


As implemented in: **PYTHIA 8**

RHIC: d-Au @ 200 GeV

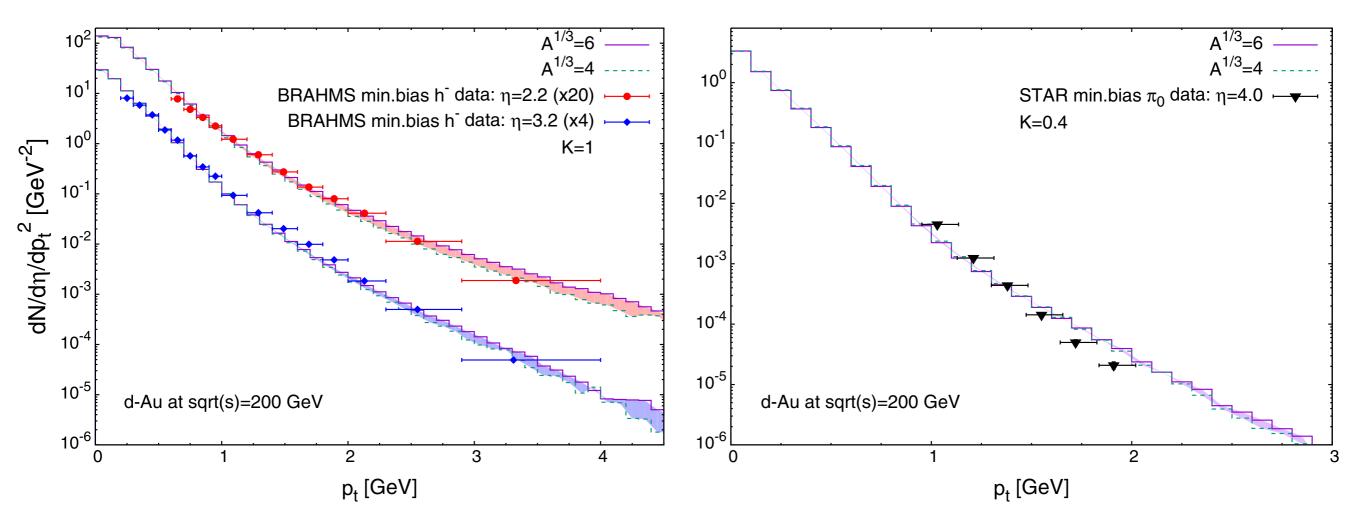
Forward spectra observed at RHIC allows for a description in terms of CGC:

RHIC:



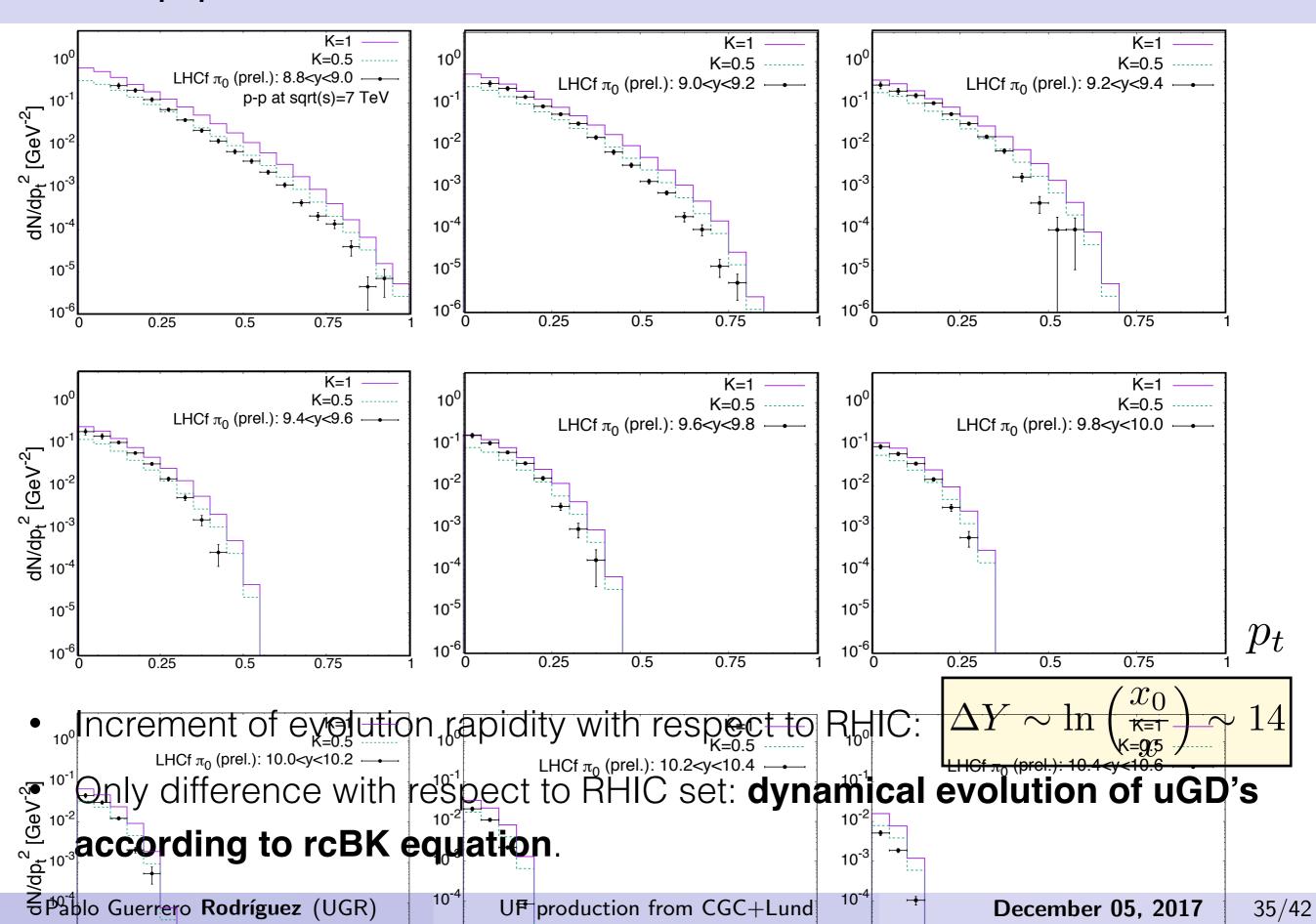
$$\begin{vmatrix} x_p \sim 10^{-1} \\ x_t \sim 10^{-4} \end{vmatrix}$$

RHIC: d-Au @ 200 GeV

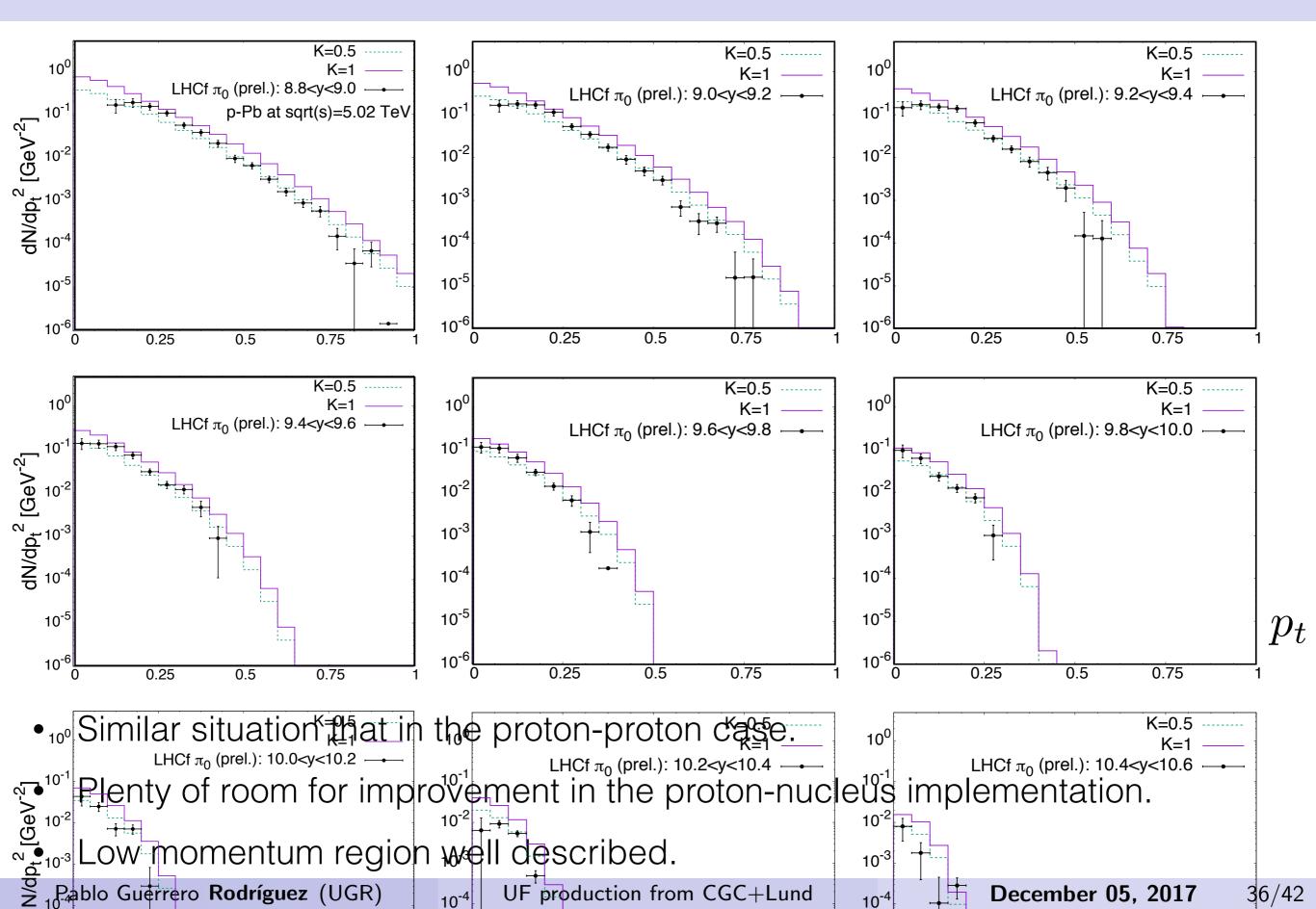


- CGC + Lund approach allows to reach p_t values as low as detected experimentally, $p_t \sim 0.2~{\rm GeV}$.
- Little sensibility to number of participants,
- BRAHMS data well described with K=1.
- STAR data well described with K=0.4 (also observed in previous analysis of data).

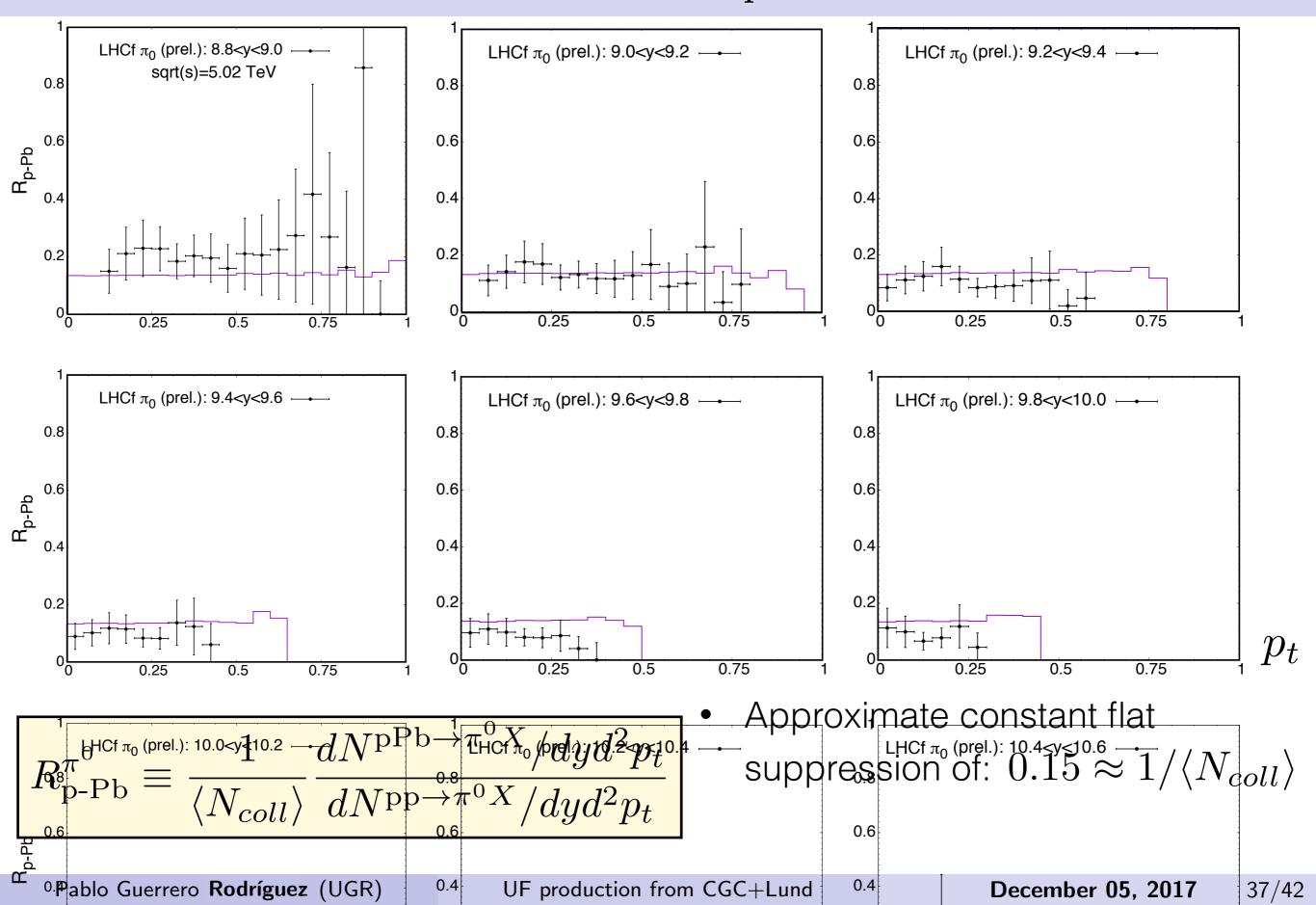
LHCf: p-p @ 7 TeV



LHCf: p-Pb @ 5.02 TeV



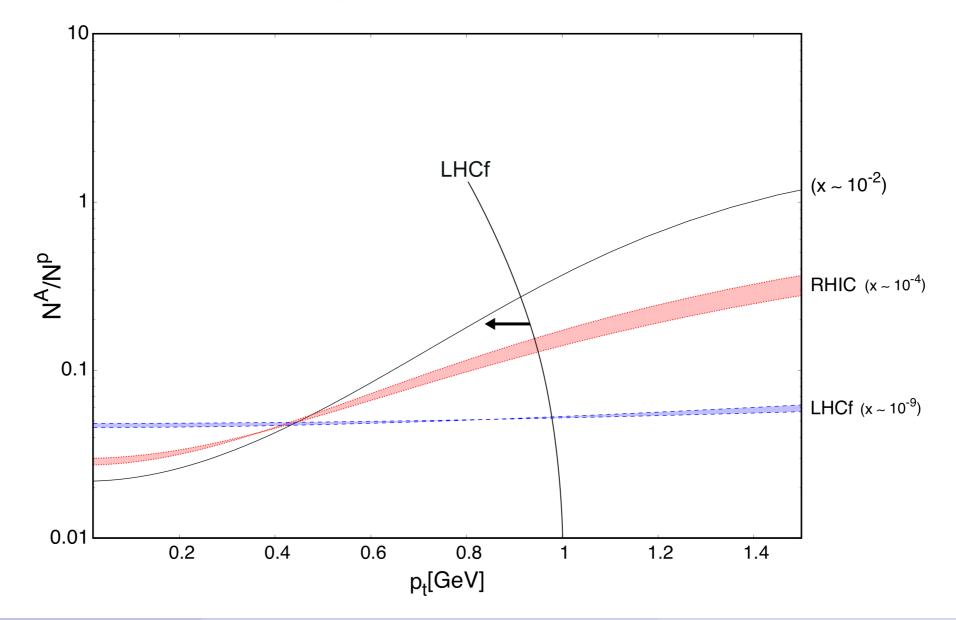
LHCf: nuclear modification factor $R_{ m p\mbox{-}Pb}$ @ 5.02 TeV



LHCf: nuclear modification factor $R_{ m p-Pb}$ @ 5.02 TeV

$$R_{\text{p-Pb}}^{\pi^0} \equiv \frac{1}{\langle N_{coll} \rangle} \frac{dN^{\text{pPb} \to \pi^0 X} / dy d^2 p_t}{dN^{\text{pp} \to \pi^0 X} / dy d^2 p_t}$$

- Approximate constant flat suppression of: $0.15 \approx 1/\langle N_{coll} \rangle$
- This behavior can be understood as a direct consequence of the behavior of the ratios of the uGD's:



- We achieve a good description of single inclusive spectra of charged particles and neutral pions at RHIC and the LHC respectively, and nuclear modification factors for proton-lead collisions at the LHC.
 - This adds evidence to the idea that the main properties of forward data are dominated by the saturation effects encoded in the unintegrated gluon distribution of the target

- We achieve a good description of single inclusive spectra of charged particles and neutral pions at RHIC and the LHC respectively, and nuclear modification factors for proton-lead collisions at the LHC.
 - This adds evidence to the idea that the main properties of forward data are dominated by the saturation effects encoded in the unintegrated gluon distribution of the target
- Our approach allows for a description of spectra at the smaller values of transverse momentum
 - Opens the door for a calculation of particle **multiplicities** and other soft observables

- We achieve a good description of single inclusive spectra of charged particles and neutral pions at RHIC and the LHC respectively, and nuclear modification factors for proton-lead collisions at the LHC.
 - This adds evidence to the idea that the main properties of forward data are dominated by the saturation effects encoded in the unintegrated gluon distribution of the target
- Our approach allows for a description of spectra at the smaller values of transverse momentum
 - Opens the door for a calculation of particle **multiplicities** and other soft observables
- Forward particle production is of key importance in the development of air showers
 - Theoretically controlled extrapolation of our results to the scale of ultra-high energy cosmic rays, thus serving as starting point for future works on this topic

- We achieve a good description of single inclusive spectra of charged particles and neutral pions at RHIC and the LHC respectively, and nuclear modification factors for proton-lead collisions at the LHC.
 - This adds evidence to the idea that the main properties of forward data are dominated by the saturation effects encoded in the unintegrated gluon distribution of the target
- Our approach allows for a description of spectra at the smaller values of transverse momentum
 - Opens the door for a calculation of particle **multiplicities** and other soft observables
- Forward particle production is of key importance in the development of air showers
 - Theoretically controlled extrapolation of our results to the scale of ultra-high energy cosmic rays, thus serving as starting point for future works on this topic
- There is still a **lot of room for improvement!** (NLO corrections, proper Monte-carlo implementation of proton-nucleus, etc.)

Perturbative parton production: implementation of DHJ formula

- Degree of accuracy of our approach:
 - DHJ formula
 leading logarithmic (LL)
 - Scale dependence of PDF's ———— LO DGLAP evolution
 - → Scale dependence of UGD's rc-BK evolution

- State-of-the-art degree of accuracy:
 - + DHJ formula NLO^{1, 2}
 - Scale dependence of PDF's → DGLAP NNLO³
 - Scale dependence of UGD's → BK NLO^{4, 5}

¹ T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Phys. Rev. D91 (2015)no. 9 094016

² G. A. Chirilli, B.-W. Xiao and F. Yuan, Phys.Rev. D86 (2012) 054005

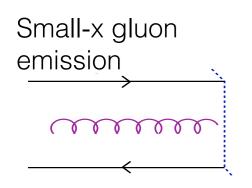
³ Gao, Jun et al. Phys.Rev. D89 (2014) no.3, 033009

⁴I. Balitsky and G. A. Chirilli, Phys. Rev. D77 (2008) 014019

⁵I. Balitsky and G. A. Chirilli, Phys. Rev. D88 (2013) 111501

BACK-UP: BK equation with running coupling

• LO BK equation resumming $\alpha_s \ln{(1/x)}$ contributions to all orders:



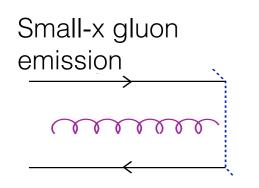
$$\frac{\partial \mathcal{N}(r, Y)}{\partial Y} = \int d\mathbf{r_1} K^{\text{LO}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2})
\times \left[\mathcal{N}(r_1, Y) + \mathcal{N}(r_2, Y) - \mathcal{N}(r, Y) - \mathcal{N}(r_1, Y) \mathcal{N}(r_2, Y) \right]$$

LO Evolution Kernel:

$$K^{\text{LO}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s}{2\pi^2} \, \frac{r^2}{r_1^2 \, r_2^2}$$

BACK-UP: BK equation with running coupling

• LO BK equation resumming $\alpha_s \ln{(1/x)}$ contributions to all orders:



$$\frac{\partial \mathcal{N}(r, Y)}{\partial Y} = \int d\mathbf{r_1} K^{\text{LO}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2})
\times \left[\mathcal{N}(r_1, Y) + \mathcal{N}(r_2, Y) - \mathcal{N}(r, Y) - \mathcal{N}(r_1, Y) \mathcal{N}(r_2, Y) \right]$$

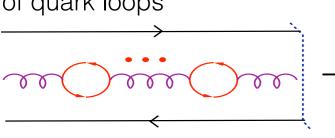
LO Evolution Kernel: $\mathcal{K} \otimes \phi(\mathbf{x}, \mathbf{k_t}) - \phi(\mathbf{x}, \mathbf{k_t})^2$

$$K^{\text{LO}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s}{2\pi^2} \, \frac{r^2}{r_1^2 \, r_2^2}$$

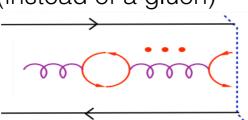
(According to some separation scheme)

• Considering $\alpha_s N_f$ corrections:

Running coupling: chains of quark loops



Emission of $q\bar{q}$ pair (instead of a gluon)



$$\frac{\partial \mathcal{N}(r,Y)}{\partial Y} = \mathcal{R}[\mathcal{N}] - \mathcal{S}[\mathcal{N}]$$

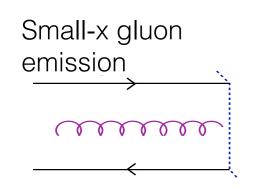
Running coupling term: gathers all the $\alpha_s N_f$ factors that complete the β -function

$$\frac{1}{2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

 $\mathbf{x})$

BACK-UP: BK equation with running coupling

• LO BK equation resumming $\alpha_s \ln{(1/x)}$ contributions to all orders:



$$\frac{\partial \mathcal{N}(r, Y)}{\partial Y} = \int d\mathbf{r_1} K^{\text{LO}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2})
\times \left[\mathcal{N}(r_1, Y) + \mathcal{N}(r_2, Y) - \mathcal{N}(r, Y) - \mathcal{N}(r_1, Y) \mathcal{N}(r_2, Y) \right]$$

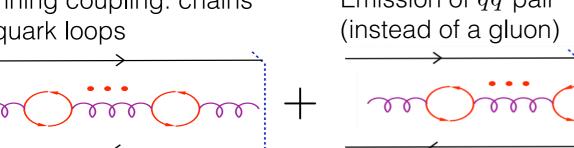
LO Evolution Kernel: $\mathcal{K} \otimes \phi(\mathbf{x}, \mathbf{k_t}) - \phi(\mathbf{x}, \mathbf{k_t})^2$

$$K^{\text{LO}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s}{2\pi^2} \, \frac{r^2}{r_1^2 \, r_2^2}$$

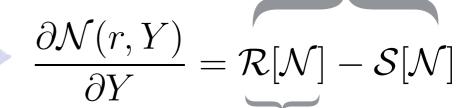
(According to some separation scheme)

• Considering $\alpha_s N_f$ corrections:

Running coupling: chains of quark loops



Emission of $q\bar{q}$ pair



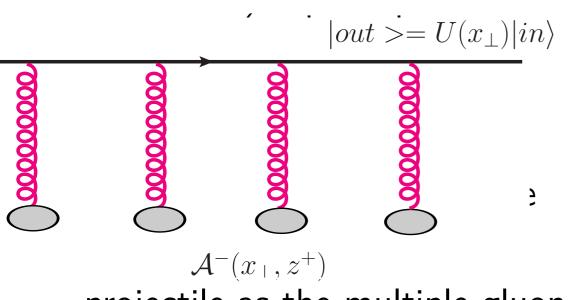
Running coupling term: gathers all the $\alpha_s N_f$ factors that complete the β -function

We only consider the running term $\mathcal{S}[\mathcal{N}]$ demands very large computing time. We only consider the running term $\mathcal{R}[\mathcal{N}]$ (prescription proposed by Balitsky¹)

Running coupling Kernel:
$$K^{\text{Bal}}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \, \alpha_s(r^2)}{2\pi^2} \left[\frac{r^2}{r_1^2 \, r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

1 I. I. Balitsky, Quark Contribution to the Small-x Evolution of Color Dipole, Phys. Rev. D 75 (2007) 014001

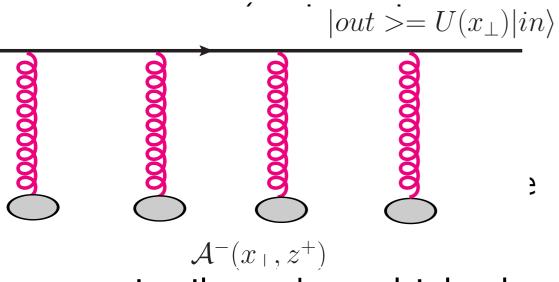
 Dipole models are simple formulations for the description of Deep Inelastic Scattering

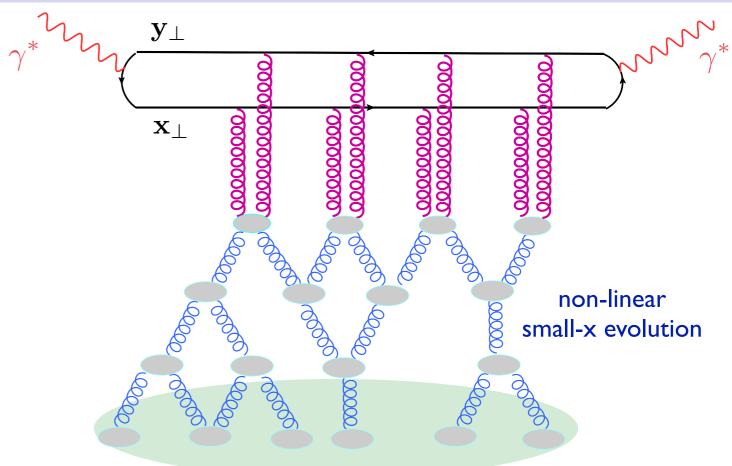


x_⊥ mon-linear small-x evolution

projectile as the multiple gluon exchange with a virtual quark-antiquark dipole.

 Dipole models are simple formulations for the description of Deep Inelastic Scattering



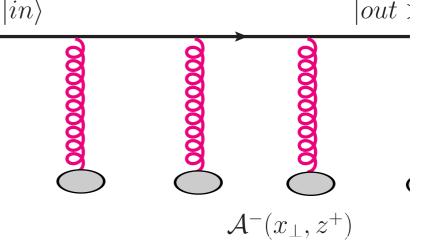


projectile as the multiple gluon exchange with a virtual quark-antiquark dipole.

Multiple gluon scattering in the eikonal approximation: definition of

WILSON LINES:

$$U(x_{\perp}) = \mathcal{P} \exp \left[ig \int dx^{-} A^{+}(x^{-}, x_{\perp}) \right]$$



$$U(x_{\perp}) = \mathcal{P} \exp \left[ig \int dx^{-} A^{+}(x^{-}, x_{\perp}) \right]$$

Dipole scattering amplitudes: two-point correlators of Wilson Lines:

$$\mathcal{N}(\mathbf{r}, \mathbf{b}, x) = 1 - \frac{1}{N_c} \langle \text{tr}\{U(x_{1\perp})U^{\dagger}(x_{2\perp})\}\rangle_x$$

• Unintegrated gluon distributions (uGD's) defined as the Fourier transform of dipole scattering amplitude. We take the uGD's as universal objects that represent the effect of gluon-saturated target over hadronic projectiles.

$$U(x_{\perp}) = \mathcal{P} \exp \left[ig \int dx^{-} A^{+}(x^{-}, x_{\perp}) \right]$$

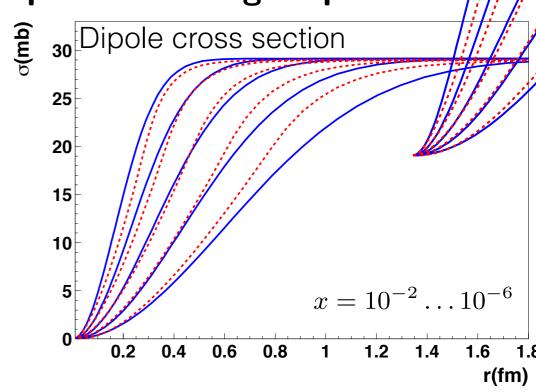
Dipole scattering amplitudes: two-point correlators of Wilson Lines:

$$\mathcal{N}(\mathbf{r}, \mathbf{b}, x) = 1 - \frac{1}{N_c} \langle \text{tr}\{U(x_{1\perp})U^{\dagger}(x_{2\perp})\}\rangle_x$$

- Unintegrated gluon distributions (uGD's) defined as the Fourier transform of dipole scattering amplitude. We take the uGD's as universal objects that represent the effect of gluon-saturated target over hadronic projectiles.
- Phenomenological models modelization of dipole scattering amplitude

For example: GBW model ¹

$$\mathcal{N}(\mathbf{r}, \mathbf{b}, x) = \theta(b_0 - b)(1 - \exp(-r^2 Q_s^2/4))$$



$$U(x_{\perp}) = \mathcal{P} \exp \left[ig \int dx^{-} A^{+}(x^{-}, x_{\perp}) \right]$$

• Dipole scattering amplitudes: two-point correlators of Wilson Lines:

$$\mathcal{N}(\mathbf{r}, \mathbf{b}, x) = 1 - \frac{1}{N_c} \langle \text{tr}\{U(x_{1\perp})U^{\dagger}(x_{2\perp})\}\rangle_x$$

- Unintegrated gluon distributions (uGD's) defined as the Fourier transform of dipole scattering amplitude. We take the uGD's as universal objects that represent the effect of gluon-saturated target over hadronic projectiles.
- Phenomenological models modelization of dipole scattering amplitude

For example: GBW model ¹

$$\mathcal{N}(\mathbf{r}, \mathbf{b}, x) = \theta(b_0 - b)(1 - \exp(-r^2 Q_s^2/4))$$

Small-x evolution encoded in BK equation

Theoretically controlled tool for extrapolation!

 $Q_s^2/4))$ 25 20 15 10 $x = 10^{-2} \dots 10^{-6}$ 10 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 r(fm)

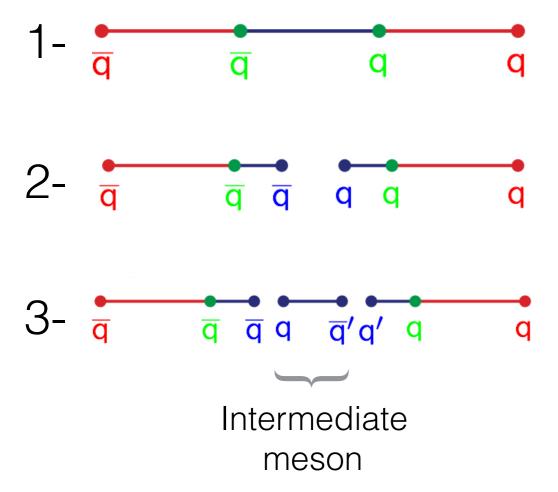
Dipole cross section

1 Golec-Biernat, K. et al. Phys.Rev. D79 (2009) 114010

BACK-UP: Model of baryon production in Lund formalism

- Diquark model: diquarks in color antitriplets are (effectively) fundamental objects of the theory

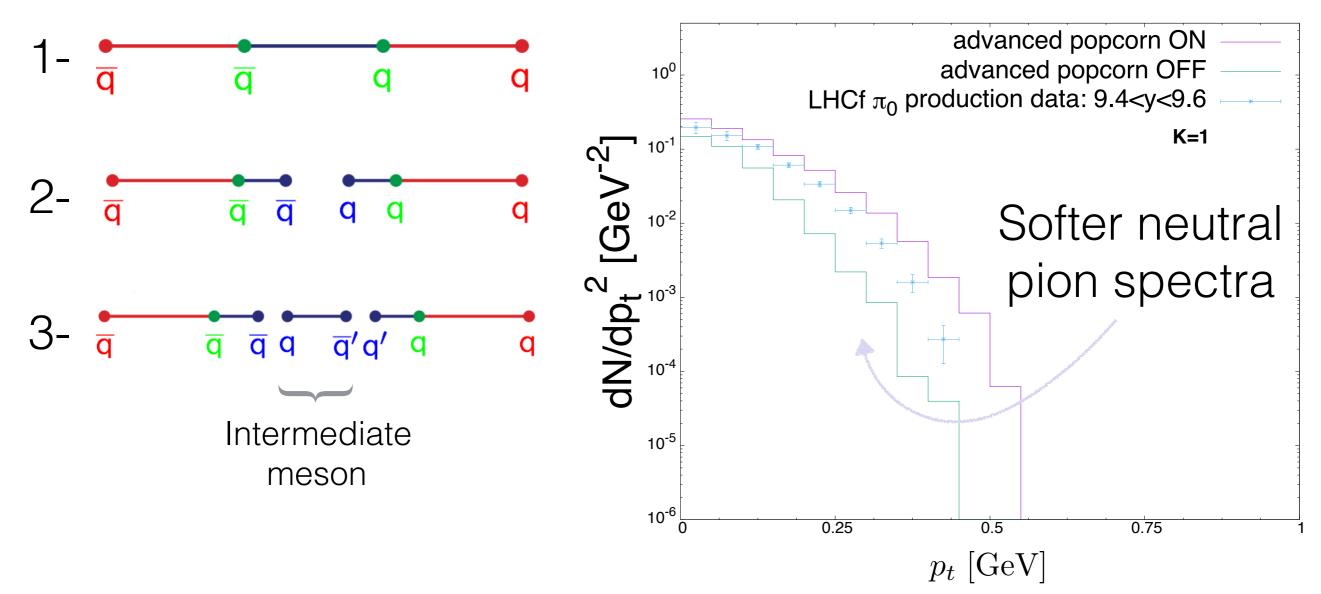
 → diquark-antidiquarks fluctuations are an additional string breaking mechanism.
- Popcorn model: Quarks are the only fundamental objects. This model allows for the generation of intermediate mesons.



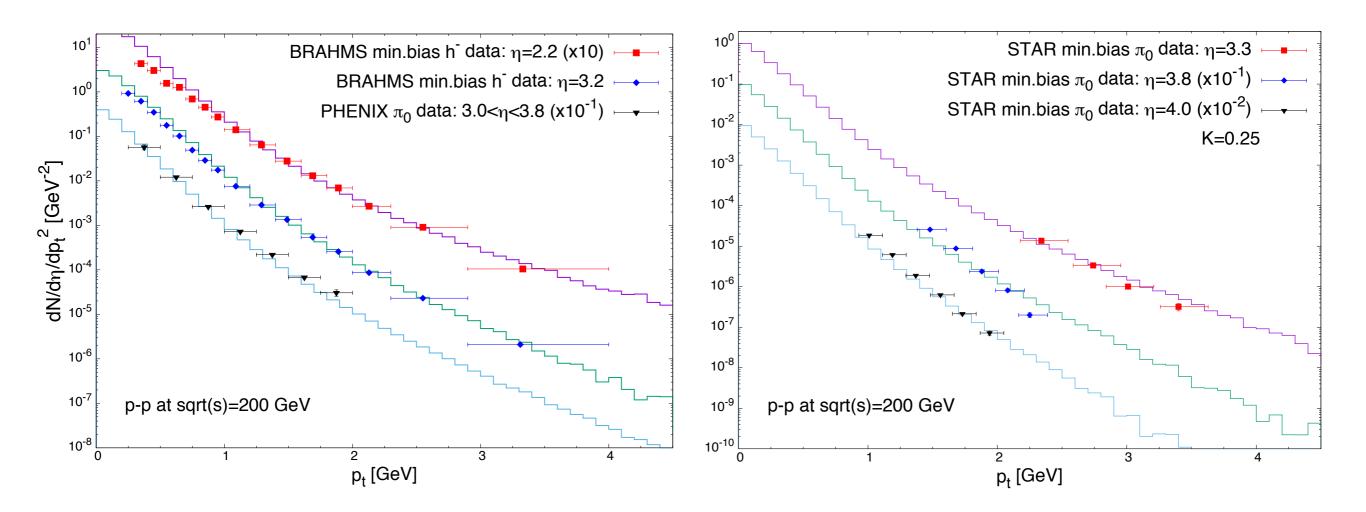
BACK-UP: Model of baryon production in Lund formalism

- Diquark model: diquarks in color antitriplets are (effectively) fundamental objects of the theory

 → diquark-antidiquarks fluctuations are an additional string breaking mechanism.
- **Popcorn model**: Quarks are the only fundamental objects. This model allows for the generation of intermediate mesons.

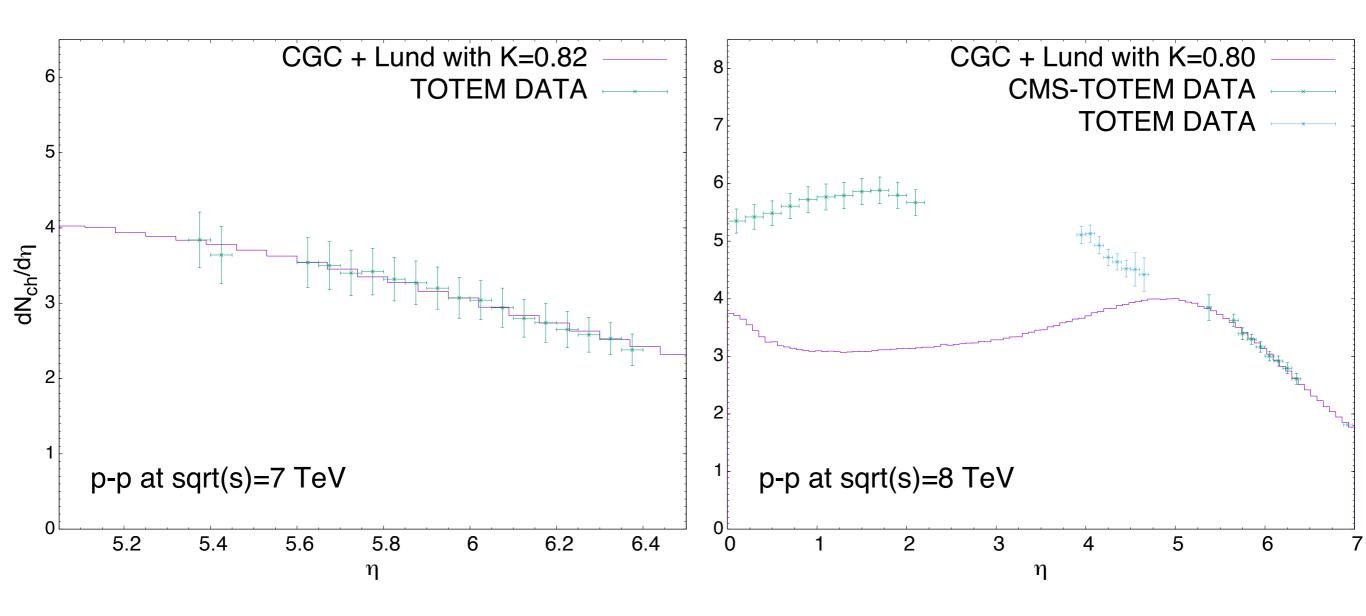


RHIC: p-p@ 200 GeV



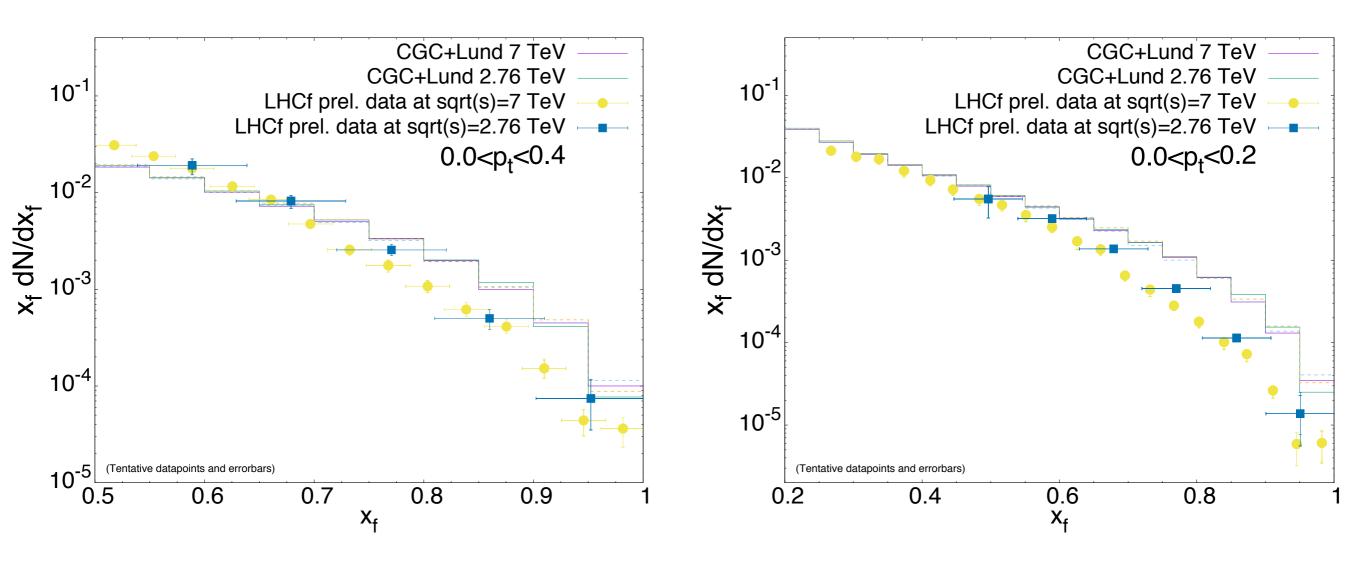
- Good agreement with data in the whole p_t range with K=1 (except for data measured at STAR).
- CGC + Lund approach allows to reach p_t values as low as detected experimentally, $p_t \sim 0.2~{
 m GeV}$

Multiplicity in p-p collisions: TOTEM data (sneak peek)



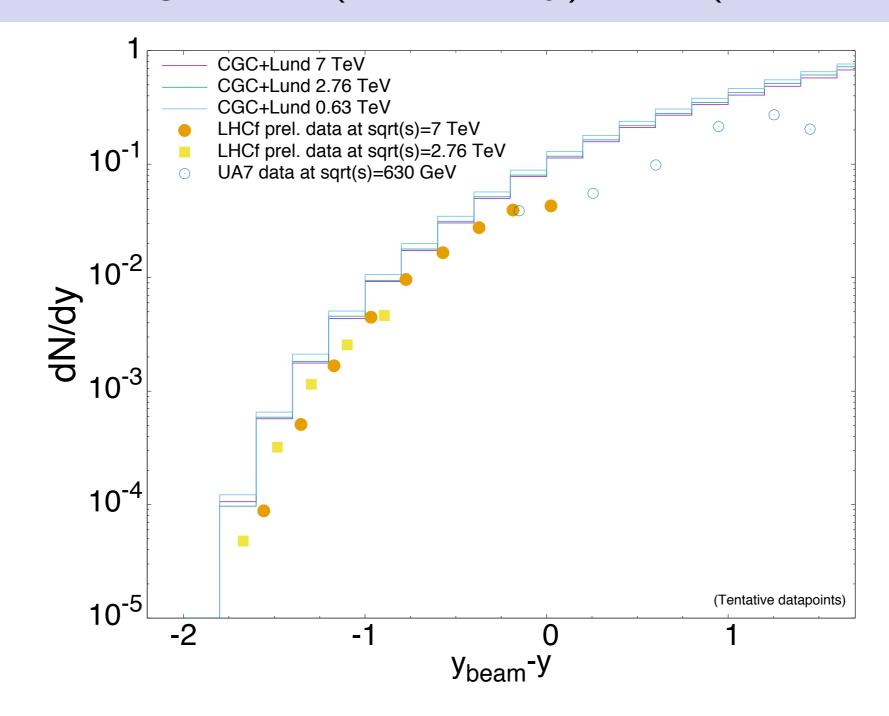
Good reproduction of charged hadron multiplicity for high rapidities

Feynman scaling: LHCf (preliminary) data (sneak peek)



Model reproduces Feynman scaling

Feynman scaling: LHCf (preliminary) data (sneak peek)



Model reproduces Feynman scaling

Nucleus-nucleus collisions: early results (sneak peek)

